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Abstract 
This dissertation covers several distinct projects relating to the fields of nuclear forensics and basic 

actinide science. Post-detonation nuclear forensics, in particular, the study of fission products resulting 

from a nuclear device to determine device attributes and information, often depends on the comparison 

of fission products to a library of known ratios. The expansion of this library is imperative as technology 

advances. Rapid separation of fission products from a target material, without the need to dissolve the 

target, is an important technique to develop to improve the library and provide a means to develop 

samples and standards for testing separations. Several materials were studied as a proof-of-concept that 

fission products can be extracted from a solid target, including microparticulate (< 10 µm diameter) dUO2, 

porous metal organic frameworks (MOFs) synthesized from depleted uranium (dU), and other organic-

based frameworks containing dU. The targets were irradiated with fast neutrons from one of two different 

neutron sources, contacted with dilute acids to facilitate the separation of fission products, and analyzed 

via gamma spectroscopy for separation yields. The results indicate that smaller particle sizes of dUO2 in 

contact with the secondary matrix KBr yield higher separation yields than particles without a secondary 

matrix. It was also discovered that using 0.1 M HNO3 as a contact acid leads to the dissolution of the target 

material. Lower concentrations of acid were used for future experiments. In the case of the MOFs, a larger 

pore size in the framework leads to higher separation yields when contacted with 0.01 M HNO3. Different 

types of frameworks also yield different results.  

The second portion of this dissertation describes efforts to better understand electronic structure and 

bonding of the actinide metals in various environments. One project involved studying thorium and 

uranium bonding with the soft-donor chalcogenides, specifically sulfur. Results from these studies include 

the synthesis and characterization of the novel (C5Me5)2Th(SMe)2 complex; the synthesis of (C5Me5)2ThS5 

by  myriad routes, indicating the product is a thermodynamic sink; and evidence that sulfur is inserted 
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into the thorium-carbon bond of (C5Me5)2ThMe2 to form the pentasulfide. The second project involved 

unique activation of the strong carbon-halide bonds present in benzyl-halides mediated by a uranium-

(2,2’-bipyridine) complex. The resultant products include a series of uranium-halide bonds from fluoride 

to iodide, and the addition of the benzyl group to the bipyridine ring. Studies of the mechanism indicate 

that the benzyl group is added first to the 6 position of the ring before migrating to its final place at the 4 

position. The final project utilized a novel gold-tetrazolate complex that can be tailored to add high-

nitrogen ligands to actinides in a facile and safe way. This transfer ligand was used to synthesize new 

uranium-tetrazolate species. A brief exploration into using the transfer ligand to add tetrazolates to 

lanthanides was also done. All resultant compounds from each of these projects was studied by NMR, IR, 

and UV-Vis-NIR spectroscopies, electrochemistry, and X-ray crystallography.  
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Chapter 1: Background  

1.1 Introduction 
Separating fission product isotopes from one another in order to determine their concentrations, 

activities, and ratios has been a goal of nuclear forensics scientists for decades.1,2 These isotopes and their 

ratios are signatures that are part of the desired outcome of nuclear forensic evaluation. Should a nuclear 

device be detonated, the identification of individual isotopes of elements in the fallout through effective 

separation can lead to answers on what type of device was detonated, how and when it was made, and 

the nature of the nuclear material production facility.3  

In order to study the ratios of certain fission products that would be present after a device is detonated, 

actinide targets are irradiated in a neutron flux and the fission products are separated from the target.4 

The first step in processing these targets is to dissolve the actinide foil and remove the remaining actinide 

from the fission products.4,5 The dissolution can be performed using a range of methods; it often involves 

a mixture of nitric acid and sulfuric acid, and it can take several hours for the target to completely 

dissolve.4 Corrosive and radioactive waste is produced when separating the actinide target material from 

the fission products, and the process is time consuming.6 Some effort has been made to reduce waste and 

reuse the target; this involves re-precipitating the actinide from the acid solution and processing it into a 

reusable form.6 However, extra steps are added, which increases the time needed to work with these 

materials. The aim of this project is to create a target that doesn’t need to be dissolved before separation 

of the fission product isotopes, and can potentially be re-used quickly.  

Tangential to the nuclear forensic aspect of the project, there is also interest in isotope separation to 

support nuclear medicine. The United States government has goals to increase and sustain the reliable 

supply of radioisotopes that are used in medical procedures. There are few facilities around the world 

that can produce these isotopes, such as 99Mo, and most are reaching the end of their lifespans.4 Simplified 
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extraction methods could improve the production, distribution, and use of radioisotopes in nuclear 

medicine. The ability to rapidly separate fission products from a target could influence multiple fields of 

nuclear chemistry.  

To create a target material that is robust to irradiation and dissolution of the fission products, the primary 

study of this project is focused on depleted uranium (dU) encased in a matrix material which can be easily 

removed in a liquid phase. Depleted uranium is comprised of over 99.3 atomic % of 238U, with less than 

0.7 atomic % 235U.7 In the initial studies performed in this thesis, KBr was selected as the matrix material. 

Solution conditions were selected in which the KBr dissolved and the uranium target remained in the solid 

phase. Explanations of these conditions can be found in Chapter 2. Fission of 238U, the primary isotope of 

depleted uranium, can be achieved with fast neutrons, or those neutrons with energies over 1 MeV. In 

UO2, fission products travel approximately 10 µm (based on recoil energy).8 If the UO2 material diameter 

is smaller than that distance, the fission products could potentially embed themselves on the surrounding 

matrix, thus using the recoil energies as a means of separation. Experiments based on this process are 

described in Chapter 2.  

The uranium could also be coordinated within a mesoporous or nanoporous matrix comprising a Metal 

Organic Framework (MOF).  The porosity of the MOF could serve as a means to increase the separation 

by allowing more of the material to be in contact with the liquid phase. However, the porosity increases 

the potential of the fission process destroying the backbone of the MOF through the impact of ionizing 

radiation or recoil particles on the bonds; however, high linear energy transfer will localize ionization and 

the bulk of the matrix will not experience a nuclear induced chemical reaction.9 To find a robust but porous 

matrix, several different organic linker molecules based on prior MOF literature will be bound to uranium 

and then irradiated to serve as examples. Chapter 3 discusses MOF synthesis and irradiation experiments 

performed over the course of several years. 
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As part of this research, the targets are synthesized using depleted uranium as the matrix material. The 

material is characterized and irradiated, and the fission products are extracted and analyzed. The details 

for these experiments are listed in Chapters 2, 3, and 4. What follows are the background surveys on the 

literature, the results of synthetic strategies, and irradiation and extraction of fission products from the 

matrix materials.  

1.2 Dissertation Overview 
This chapter provides an introduction to the project and background information on the chemistry of 

thorium and uranium, synthetic methods, and analytical techniques used in the first half of this thesis 

work. Chapter 2 details the synthesis and irradiation of UO2 targets and how a matrix material affects the 

separation potential of fission products from the target. Chapter 3 describes the synthesis and irradiation 

of UO2-MOF (metal-organic framework) targets and the results from those separation experiments. This 

chapter also discusses the differences in results between the MOF targets and the UO2 targets. Chapter 4 

is the final chapter in the irradiation portion of this manuscript, and it details the less successful irradiation 

targets. The work in the remaining chapters was performed at Los Alamos National Laboratory and 

includes basic actinide syntheses designed to gain a better understanding of their bonding characteristics. 

The results from these studies may be useful to the radiochemical field for separating actinides from each 

other, or from lanthanides. Chapter 5 details chalcogenide studies, Chapter 6 explains experiments related 

to actinide mediated C-X activation, and Chapter 7 discusses high-nitrogen ligand addition to actinides 

using gold. Conclusions to both sections of the research, as well as future directions each project could 

take are described in Chapter 8.  
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1.3 Background of Methods and Materials 

1.3.1 Chemistry of the Actinides 
Both thorium and uranium are of interest throughout this thesis work; below is a historical description of 

the chemistry of both elements. The actinides are the first series to have a 5f subshell in their electronic 

structure.10 In its ground state, thorium does not have any electrons in its 5f subshell, and can therefore 

be a useful tool for comparisons in the chemistry with elements, such as uranium, that do have occupied 

5f orbitals. The ionic radius difference is also unlike that found for the majority of the periodic table; due 

to relativistic effects, the ionic radius of the actinides decreases from left to right. This is known as the 

actinide contraction, and may also give rise to differences in chemistry between thorium and uranium.  

1.3.1.1 Thorium 

Thorium (element 90) was discovered in 1828 by Swedish chemist Jöns Jacob Berzelius and was named 

after Thor, the Scandinavian god of thunder and weather. It was isolated from thorite, which is essentially 

thorium silicate. Thorite also contains a significant amount of uranium, and so the chemical formula is 

written as (Th,U)SiO4.11 For nearly 50 years, thorium had no application. It wasn’t until the invention of 

the incandescent gas mantle by C. Auer von Welsbach that thorium was used commercially because of its 

heat-resistant properties.11 It also has applications in the production of ceramics, as a coating for tungsten 

welding rods, as it provides a hotter arc, and strong alloys. More recently, thorium has been used in dating 

very old geological materials, such as mountain ranges, and as a nuclear fuel source.11 Thorium is more 

abundant in the Earth’s crust than uranium - nearly as abundant as lead and molybdenum - and 232Th can 

be converted to fissile 233U using thermal neutrons. As the isotope 233U is fissile, it can be fissioned by 

thermal neutrons to produce neutrons and continue the cycle.11 

Natural thorium is almost exclusively 232Th with a very small amount of 228Th (also known as radiothorium), 

which comes from the decay chain of 232Th. Thorium occurs almost exclusively in the tetravalent state, 



 

5 
 

and is frequently found in ores mixed with uranium.11 Thorium metal has the highest melting point among 

the actinides (1750 °C) and the lowest density in the series apart from actinium (11.724 g/cm3).11 It is also 

paramagnetic, with a ground state of 6d27s2, and is quite reactive toward elements such as oxygen, 

hydrogen, and the halogens. It does not contain any f-electrons in its ground state, and as such is 

commonly used as a tool to study the effects of the f-electrons in bonding when compared to uranium. 

Thorium is arguably one of the most well-studied of the actinides, given its lengthy half-life (1.4E10 years) 

and low energy gamma emissions; there are several hundred known compounds involving thorium. 

However, the organometallic chemistry of thorium (see Chapter 5) wasn’t well studied until the 1970s 

when Marks and co-workers became interested in the cyclopentadienyl-thorium system.12   

1.3.1.2 Uranium 

Uranium (element 92) was discovered in 1789 by Martin Heinrich Klaproth in the form of pitchblende, a 

combination of UO2 with U3O8.7,13 Uranium dioxide was believed to be the pure elemental form until 1841 

when Eugene-Melchior Peligot prepared metallic uranium from UO2. He was also the first to describe the 

yellow salts of uranium as “uranyl” compounds. Uranium was primarily used for colorants in ceramics and 

glasses for the first century after its discovery, until Becquerel discovered in 1896 that it emitted 

penetrating rays. Until the discovery of nuclear fission in 1938 by Strassman, Hahn, and Meitner, uranium 

was not regarded as an especially important element. Now, however, uranium is used in multiple 

applications from energy to weapons.7,13  

Natural uranium contains three isotopes of uranium in varying concentrations atom percentage: 235U 

(0.005%), 235U (0.720%), and 238U (99.275%). Depleted uranium consists of more than 99.3 atomic percent 

238U and less than 0.7 atomic percent 235U, whereas enriched uranium has levels of both 234U and 235U 

above their natural abundances. The isotopes can be separated through gaseous diffusion – where UF6 

vapor diffuses through a series of barriers – or gas centrifuge – where the isotopes are physically 
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separated via centripetal force.14 It is found in ore bodies mainly in Australia (31%), Kazakhstan (12%), 

Russia (9%), and Canada (9%). The United States has uranium ores that contain about 4% of the world’s 

uranium supply.15  

Uranium metal is strongly electropositive, similar to aluminum and magnesium, and it is highly reactive. 

The oxidation states of uranium range from +3 to +6, with +4 and +6 the most stable in aqueous 

conditions.13,14 Figure 1 shows the Eh-pH diagram of U-O-H. The species of uranium in aqueous conditions 

at any given pH or potential can be found by using this diagram. For example, it can be seen that trivalent 

uranium is easily oxidized due to its high negative potential. Pentavalent uranium in the form of UO2
+ will 

disproportionate into U(4+) and UO2
2+ under aqueous conditions.13,14 Tetravalent uranium is insoluble in 

mildly acidic (pH = 4.2) to alkaline conditions (pH = 9.8). Hexavalent uranium is highly soluble, especially 

in aqueous solutions, and is very mobile. These properties are part of what makes storing used fuel so 

difficult.7,13,14  
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Figure 1. Eh-pH diagram of the U-O-H system [U]=10-10, 25°C, 1 bar.16 

The majority of hexavalent uranium compounds contain the uranyl (UO2
2+) cation. Uranyl is a linear 

molecule with the oxygen atoms double bonded to the uranium metal 180° apart. Other groups can bond 

to the uranium in its equatorial plane. For example, uranyl nitrate has two bidentate nitrate (NO3
-) groups 

bound equatorially around the uranyl moiety (Figure 2).17 The resulting geometries of coordination with 

UO2
2+ are square-, pentagonal-, and hexagonal-bipyramidal. A variety of ligands have been shown to 

coordinate to the uranyl molecule, especially those with O donor functional groups, such as carboxylic 

acids, enolates, and Schiff bases.18 This means that a range of organic linker molecules can be explored, 

which allows novel compounds to be synthesized fairly easily.17 
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Figure 2. Crystal structure of uranyl nitrate trihydrate. Water molecules omitted for clarity.17 

 

Absorption of uranyl in aqueous solution occurs around 400 nm (Figure 3),19 giving uranyl compounds a 

distinctive yellow color. The absorption band in UV-Visible spectroscopy often exhibits fine structures due 

to progressions in symmetric O=U=O vibrations in the excited state.14 For the synthetic procedures 

described in the first four chapters of this manuscript, the uranium starting material is in the form of 

uranyl nitrate hexahydrate, which is very similar to the trihydrate shown in Figure 2. 

 

Figure 3. Absorption spectra in water of: 1) UO2
2+, 2) UO2NO3

+, and 3) UO2(NO3)2.19 

1.4 Metal-Organic Frameworks 
Porous organic coordination networks have been studied with respect to various applications for 

decades.20 The first organic coordination network was discovered in 1897 by Hofmann and Küspert, but 
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the structure was not confirmed until 1954.21 This discovery was important because the possibility existed 

to control the pore size and overall structure of the framework by selecting ligands with determined 

shapes and functionalizations. In this way, both the size and environment of the pore could be engineered 

for a specific application. Prior to the discovery of organic coordination networks, inorganic frameworks, 

such as zeolites or sieves, were the only type of structures used for their porosity. Their uses included the 

removal of solvents (e.g. water) from an environment.21 Other applications such as petroleum refinement, 

ion exchange, and molecular adsorption depend on zeolites, but because of the restricted pore size, they 

can only be used with small molecules.21 Zeolites are purely inorganic, and while they are the most 

prominently used group of porous materials, they are highly limited by their pore sizes. These pore sizes 

often range from 4 to 9 Å in diameter, and can be round or elongated in shape.22 This restriction lead to 

the development of metal-organic materials.  

 

Figure 4. Generic example of a MOF with carboxylate organic linker molecules.23 

A metal-organic framework (Figure 4) is composed of a metal center linked with organic ligands, which 

allows for the potential of exploiting properties of both the organic and inorganic components within a 

single material.20,21 The organic molecule can be used to control the size, shape, and functionality of the 

pore in the material, while the inorganic metal offers thermal and mechanical stability. Optical and 

electronic properties of interest may also be changed based on the metal center. The components of 

MOFs are connected via coordination bonds such as H-bonds, π-electron stacking, and van der Waals 
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interactions. These interactions lead to a structural flexibility in the crystalline state, which promotes the 

unique character of MOFs.20 Late transition metals such as copper, silver, zinc, and cadmium tend to 

provide a multi-dimensional framework. Theoretically, MOFs can be constructed from multiple organic 

ligands or metal ions; however there are very few reports on frameworks that have more than two kinds 

of either ligand or metal.20  

The MOFs are a relatively new topic in synthetic chemistry, having only been studied in depth since the 

late 1980s. Permanent porosity was discovered in the 1990s, which lead to even more interest in MOFs 

as a way to store gases; however, carboxylate based ligands (on which this thesis work is based) were not 

well explored until the mid-1990s.20 Carboxylates are useful linking ligands because they can be 

deprotonated for charge balances, and they can bind the metal in a variety of ways. The carboxylate group 

also allows for the formation of multiple bonds to the metal, which adds to stability of the framework. 

The pore sizes used in this thesis work are relatively small – between 5 and 9 Å in diameter – but the 

possibility for pore sizes in excess of 30 Å exists.24  

Metal-organic frameworks have traditionally been made with transition metals, and in a few cases the 

lanthanides, but there are far fewer records of MOFs made with actinides. Progress is continuing with 

researchers looking into the potential of actinides as the metal center.18,25-32 For example, the Cahill group 

has been studying uranium MOFs for over a decade; they are interested in using dicarboxylate18,33-35 and 

mixed aliphatic28,29 ligands to create the 3-dimensional structures. The Thuéry group has also studied 

uranium MOFs using dicarboxylate linkers,31,32 as well as flexible aromatic groups.30 

This thesis work uses uranium as the metal center for the production of irradiation targets. The porosity 

of the MOF may allow for easy, rapid separation of the fission products that are formed in the irradiation. 

Chapter 3 details the results of irradiations on uranium MOFs.  
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1.5 Hydrothermal Chemistry 
Hydrothermal chemistry is a solid-state chemistry technique used to grow single crystals of a material 

from water, and is often used for synthesis of MOFs. It is typically performed in a stainless steel autoclave 

(Figure 5) at temperatures up to 250 °C and pressures up to 1800 psig (pounds per square inch gauge). 

The temperature limitation is due to the use of a Teflon liner. Glass tubes can also be used in place of the 

autoclave, although that method has fallen out of favor due to pressure limitations.  

 

Figure 5. Parr acid digestion vessel model 4749.36 

The autoclave is comprised of two major parts – the inner Teflon liner, and the outer steel body. The 

materials and solvents are placed in the Teflon liner and capped with a Teflon lid. The liner is place in the 

steel outer body on top of a removable steel disk. Two corrosion disks are placed on top of the Teflon lid 

to prevent the corrosion of the steel body in the event of a leak. Two pressure plates are placed on top of 

the corrosion disks with a spring between them. These plates allow for pressure release should the 

autoclave become over pressurized. However, the plates only prevent the autoclave from exploding 

radially because they are purposefully the weakest point in the design. Over pressurization still results in 

an explosive force that expands axially and could potentially blow the top off of the autoclave. This 

situation is not ideal, and great care is taken to ensure that the final pressure of the reaction is far below 
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the limit of the autoclave. Finally, a steel cap is screwed on to hold everything together. The autoclave is 

then placed in a furnace at a certain temperature, depending on the solvent used, for a specific period of 

time. Typical time scales are on the order of hours to days. Once the autoclave has been allowed to cool, 

it is opened and the material is harvested. In general, the slower the rate of cooling of the autoclave, the 

greater the probability of getting an X-ray quality crystal. This method was used throughout this thesis 

research to create targets for irradiation, which are described in more detail in Chapters 2 and 3.  

1.6 Neutron Sources from Fusion and Fission  

Nuclear fusion is the process by which two or more nuclei collide at very high velocity and join to form a 

new nucleus.37 Some energy is given off in the process, which makes the mass of the new nucleus slightly 

less than the sum of the constituents. Fusion requires high energy and high density in order to occur, and 

the larger the mass of the nuclei, the more energy is required. Therefore, only lighter elements, such as 

hydrogen, helium, and boron, are fusible. There are some events, such as a supernova in a star, in which 

elements up to 56Fe can be fused together.38 If the elements are any larger, there is not enough energy in 

the system to force them to stick together.37 Figure 6 depicts the average binding energy per nucleon as 

the number of nucleons increases. Simply put, the greater the binding energy, the more stable the isotope. 

Isotopes smaller than 56Fe can undergo fusion, and isotopes larger than 56Fe can undergo fission.39 Those 

isotopes with full nuclear shells, such as 4He, 12C, and 16O, have higher binding energies and thus are more 

likely to be stable.  
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Figure 6. Binding energy curve39 

The process of fission can occurs when a fissile isotope is bombarded with a thermal neutron. Fertile 

isotopes, such as 238U, require a higher energy neutron to induce fission. Fissile isotopes require less 

energy to fission due to the pairing of nucleons, and can be fissioned by thermal neutrons (< 0.025 eV). 

For example, when 235U captures a neutron, it becomes 236U. The Q value from this reaction can be found 

from the mass excess of 235U and a neutron minus the 236U mass excess value. The resulting Q value of 6.5 

MeV is sufficient to overcome the fission barrier of 6.2 MeV. The energy needed to excite 236U into a 

fissionable state is exceeded by even thermal energy neutrons (< 0.025 eV).40 A similar calculation for 

thermal neutron capture on 238U to produce 239U yields a Q value of 4.8 MeV, which is not sufficient to 

overcome the fission barrier of 6.6 MeV.40 Thus higher energy neutrons are necessary to overcome the 

fission barrier and induce fission of 238U. 

The result of fission is generally two products ranging in mass from Z = 23 to Z = 72, with A values anywhere 

from A = 66 to A = 172 (in the case of 235U, see Figure 7).38 A couple of neutrons are also released in the 
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process, and they can cause fission in nearby fissile atoms. Breakup of the atom into three products 

(ternary fission) is less likely than binary fission, but does occur. The third particle is most likely a light 

particle, such as 3H (0.01% yield).41 For the purposes of this discussion, binary fission is assumed to be the 

only mode.  

A nucleus can fission into two equal fragments, but it is not the most probable mode. It is far more likely 

the fragments will be asymmetric – that is to say they are not of equal mass. The thermal fission yields for 

uranium isotopes are often shown in what is colloquially referred to as the “double-hump curve” (Figure 

7). Generally, the two humps are centered near A = 95 and A = 140, although the lower mass curve shifts 

depending on the starting material. The centering of the two humps is mainly driven by what are known 

as “magic numbers” – representations of filled nuclear shells.40 These magic numbers are Z or N = 2, 8, 20, 

28, 50, 82, and 126, and are derived from the potential of the nuclear shell structure.40 Nucleons with two 

full shells are referred to as “doubly magic” and are particularly stable. For example, 132Sn is a doubly 

magic isotope (A = 50, Z = 82) and is found near the apex of the second “hump”.  

The shape of the curve changes as a function of both the starting isotope and incident neutron energy. 

For 239Pu, the lower mass curve becomes centered near A = 103 and the upper mass curve shifts slightly 

to around A = 135. This is mainly due to the increase in nucleons in the system. The incident neutron 

energy shapes the valley of the graph. As shown in Figure 7, the greater the neutron energy, the higher 

the valley that appears between the two peaks. This translates to more symmetry in the fission products.38 

There are some isotopes that are heavy enough to undergo spontaneous fission; fission that occurs 

without additional energy from neutrons. Some isotopes with high spontaneous fission yields include 

248Cm, 252Cf, and 254Cf.38 This type of fission is not relevant to this thesis work and will not be discussed 

further.  
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Figure 7. Fission yields for 235U at different neutron energies.42 

There are a number of neutron generating sources that can induce fission in fertile or fissile material, but 

this discussion will only include two neutron sources: a dense plasma focus and a criticality device known 

as Flattop. The two devices were chosen for their convenience, availability, and cost.  

1.6.1 Fusion - Dense Plasma Focus 

The dense plasma focus (DPF) is a neutron sources located at the National Security Technology (NSTec) 

North Las Vegas site. Dense plasma focus technology has existed for several decades; it was independently 

discovered by two groups in the early 1960s.43 Essentially, it consists of a short-lived plasma that is hot 

and dense enough to cause nuclear fusion, and therefore the emission of neutrons.43,44 This plasma can 

be made up of deuterium atoms, or a combination of deuterium and tritium atoms. The energy released 

during fusion is dependent upon the make-up of the plasma. The D-D reactions release neutrons on the 

order of 3 MeV, and D-T reactions release neutrons on the order of 14 MeV.37,43,44 The DPF used within 
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this work contains a D-D plasma, and therefore emits lower energy neutrons. These neutrons are still fast 

enough to induce fission in depleted uranium.  

An electric current is applied to the deuterium gas, which breaks down into an ionized plasma. The plasma 

flows in the direction of the current and is accelerated along an anode. Eventually, the plasma slides off 

of the anode and comes into contact with itself, forming a “pinch” (Figure 8). The plasma is highly unstable 

and quickly breaks up. This break-up causes particle bursts, along with electromagnetic radiation, and 

these particles are what interact with a target material. The bursts are only nanoseconds to microseconds 

long, depending on the size of the machine, so an irradiation requires several hundreds of bursts over a 

period of time.43,44 Figure 9 shows images of the radial motion of the plasma taken in 1977 by Bernard 

et.al.45 One sample was sent to be irradiated at the DPF. The experiment and its results are discussed in 

Chapter 2.5.2.  

 

Figure 8. The three phases of a typical DPF current pulse: initiation via flashover of the insulator, axial run-down phase, and radial 
implosion to form beams and dense pinch.43  
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Figure 9. (a) Radial compression, (b)-(d) Pinch formation, (e) Bubble ionization and axial shock wave into cold gas.43 

 

1.6.2 Fission – Flattop Critical Assembly Device 

Flattop (Figure 10) is one of several critical assembly devices originally built and housed at Los Alamos 

National Laboratory (LANL). It was built in the 1950s and has been used for neutron activation studies, 

reactivity measurements, and calibrations of a variety of elements.46 In 2004, it was relocated to the 

National Criticality Experiments Research Center (NCERC) at the DAF in Nevada. The Device Assembly 

Facility (DAF) is an underground facility which was constructed in the mid-1980s to be used with 

underground nuclear testing. Since the implementation of the Comprehensive Nuclear Test-Ban Treaty in 

1996, the facility serves as a support for several experiments, including Stockpile Stewardship Science. It 

includes weapon assembly cells, irradiation assemblies (e.g. Flattop), plasma physics capabilities, 

laboratory space, and bunker areas.47  

Flattop received several safety system upgrades and came back online in 2011.48 It is essentially a highly 

enriched uranium (HEU, >90% 235U) core surrounded by a reflector of natural uranium. The core is 

comprised of two hemispheres of HEU joined by HEU screws. Both the reflector and the core have a 1.27 

cm inner diameter “glory hole” into which small samples may be placed.49 The reflector has three parts to 

it – one hemisphere is completely stationary, and the other is broken up into two moveable parts. These 

movable parts are on hydraulic tracks and can be moved quickly to control the criticality of the device. 
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There are also three control rods of natural uranium that can be inserted into the stationary hemisphere 

of the reflector. Combined with the two movable sections of the reflector, these rods act as scrams for 

the device.46 There are two other cores that can be used with Flattop – one consists of 240Pu, and the other 

of 233U. The latter has been in storage for several years, as its gamma levels are too high to be safely 

operated.49  

 

 

Figure 10. Flattop critical assembly device48,49 

 

The device is assembled by moving the core along its track into place within the stationary reflector 

section, and then moving the remaining parts of the reflector into place (Figure 11).49 The diagram in 

Figure 11 shows the placement of the control rods as well as the glory hole for sample loading. The glory 

hole can hold small samples (see Chapter 2) as well as filler pieces (Figure 12, number 31). These filler 

pieces are generally made of natural uranium or HEU metal, and can be used to adjust the reactivity of 

the devices, as well as hold samples in place.  
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Figure 11. Diagram of Flattop from above49 

 

 

 

Figure 12. Diagram of the Flattop core with fillers (labeled as 31) in the glory hole49 

 

Flattop differs from other criticality devices in that it is characterized by a fast-neutron spectrum in the 

core, and a decreased neutron spectrum in the reflector. The neutronic properties (e.g. energy) and other 

characteristics are well known from studies over the past several decades.48 A number of depleted 

uranium samples have been sent to Flattop for this thesis research. The experimental details and results 

of these irradiations are discussed in Chapter 2.  
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1.7 Gamma Spectroscopy 

One of the major types of ionizing radiation is the photon – also known as a gamma-ray at certain energies. 

Gamma rays are not charged, and often behave more like waves than particles. There are three main 

types of interaction mechanisms that gamma rays undergo when they interact with matter: photoelectric 

absorption, Compton scattering, and pair production.50  

In the photoelectric absorption process, a photon interacts with an absorber atom. This leads to the partial 

or complete transfer of the photon’s energy to the absorber atom, which releases a photoelectron – an 

electron from one of the bound shells of the atom. The photoelectron has the energy of the photon minus 

the binding energy of the electron. The absorber atom becomes ionized, and can either capture a free 

electron from the environment, or rearrange its already bound electrons to fill the hole. The latter case 

causes the release of an X-ray whose energy is equal to that of the difference in energy between electronic 

shells.50  

Compton scattering occurs between the incident gamma-ray photon and an electron in the absorber. The 

incident photon is deflected at an angle with respect to the original direction. The photon transfers a 

portion of its energy to the electron. All angles of scattering are possible, so the energy transferred from 

the photon to the electron can vary between zero and a large fraction of the gamma-ray energy.50  

 The final interaction mechanism is pair production, which only occurs if the incident photon has an energy 

greater than twice the rest mass of an electron (1.022 MeV). The higher the incident energy above that 

threshold, the higher the probability that pair production will occur. If the photon enters the coulomb 

field of a nucleus, it can spontaneously become an electron-positron pair. Any excess energy (energy from 

the photon above 1.022 MeV) becomes kinetic energy for the electron and positron. Once the positron 

has slowed down in the absorbing medium, it will interact with an electron and annihilate, producing two 

photons at 511 keV.50 
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The probability (σ) that each interaction mechanism will occur is dependent upon both the energy of the 

incident photon energy as well as the density (and atomic number) of the absorber material (Figure 13).  

As the energy of the photon increases, the dominant interaction mechanism changes. At energies above 

several MeV, pair production is the most dominant interaction. Notice that as the atomic number of the 

absorber material increases, the probability of the photoelectric effect being the dominant mechanism 

increases. It is important to note that in any given area, the probability of other interactions is not 

necessarily zero. Along the lines in the plot, the probabilities of dominance are equal between two 

mechanisms.50 Although this chart encompasses energies up to 50 MeV, for most isotopes, the gamma 

decay energy does not extend much beyond 2 MeV.  

 

Figure 13. The probability of an interaction mechanism occurring based on the energy of the incident photon and the atomic 
number of the absorber.51 

All three types of interactions can be seen in gamma detectors. There are several types of instruments 

that can be used to identify gamma radiation, such as NaI scintillation detectors and HPGE detectors. High 

Purity Germanium (HPGe) detectors are a type of semiconductor detector used to identify gamma-rays 

whose energies are on the order of keV – MeV. Because gamma rays are not charged, the likelihood of 

their interaction with material is decreased. To circumvent this problem, a higher volume of germanium 

crystal is used. A coaxial geometry, where the crystal is long in the axial direction, allows for a higher 



 

22 
 

detector volume and is generally the chosen geometry for modern HPGe detectors.50 One electrode is 

placed along the outside surface of the crystal, and the other electrode is situated in the core of the crystal 

(Figure 14). When an electric field is applied, a steady-state charge distribution is established in an area 

of the crystal.50 This area is referred to as the depletion region, and it is where the interactions of gamma 

rays with the crystal are detected.  

 

Figure 14. Technical drawing of an HPGe detector crystal.52 

However, because the bandgap in germanium is so small (0.7 eV), the detector cannot be used at room 

temperature. Thermal excitation of electrons within the crystal is enough to cause a leakage current 

resulting in the recording of false events. For this reason, the detector must be cooled down to 77 K using 

liquid nitrogen.50 Figure 15 shows a generic diagram of an HPGe detector from Canberra. The sample being 

counted is placed on top of the detector holder and surrounded by thick lead shielding to prevent 

contamination of the data from the environment.  
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Figure 15. Generic example of an HPGe detector and liquid nitrogen dewar from Canberra.53 

As the name implies, HPGe detectors are highly pure germanium crystals, which allows for high energy 

resolution compared to NaI detectors.50 This is advantageous when the samples being analyzed have 

several isotopes with closely spaced energies, or when the sources are weak because it allows for the 

spectroscopic peaks to rise above the background, or statistical noise of a continuum.50 Figure 16 depicts 

a general example of the features common to a gamma spectrum. The full energy peak (Eγ) appears when 

the full amount of energy from an incident gamma ray is deposited within the detector area. The broad 

plateau is from the Compton scattering; the range of energies from Compton interactions causes this 

continuum.50 Likewise, the annihilation peak is a result of positron emission or pair production occurring 

in the surrounding material. The double and single escape peaks occur in the spectrum when the photons 

from pair production are not captured in the detector medium and “escape”. Their energies are equal to 

the full energy peak minus either 511 keV (one annihilation peak escaped) or the full energy minus 1.022 

MeV (both annihilation peaks escaped). X-ray escape peaks occur when the X-rays formed from 

photoelectric interactions escape the detector without depositing their energy.  
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Figure 16. Generic example of gamma spectrum features 

 

Gamma spectroscopy is a useful tool to identify the presence and energy of certain radionuclides. It was 

the major means of identifying the fission products produced and separated during the irradiation of 

samples (see Chapters 2-4). It is not a perfect method, due to efficiency and the presence of non-gamma 

emitting nuclides, but it is a relatively rapid, non-destructive one that does not require the separation of 

fission products from each other prior to analysis as in ICP-MS or alpha spectroscopy. The relative 

efficiency of the detector used in the analyses presented herein was 60%.  

1.7.1 BEGe detectors 

A specific type of HPGe detector used in this research is a Broad Energy Germanium (BEGe) detector. The 

BEGe can cover a full range between 3 keV and 3 MeV, but due to their short, fat shape, there is enhanced 

efficiency and resolution at lower energies (<1 MeV).54 However, it also has comparable resolution at high 

energies to a standard HPGe detector, which makes it a useful diagnostic tool. Several samples in this 

work were counted on a BEGe detector rather than a standard co-axial HPGe. The detector used in these 

experiments had an active diameter of 69.5 mm, an active area of 3800 mm2, and a thickness of 30 mm.55 
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1.8 Inductively Coupled Plasma Mass Spectrometry 

Inductively Coupled Plasma Mass Spectrometry (ICPMS) is a technique used to detect low limits of 

elements in a sample.56 In the case of the experiments presented herein, an ELAN DRC II ICPMS from 

Perkin Elmer was used to detect the concentration of 238U dissolved in liquid samples. Liquid samples 

are sent through a nebulizer and then the ICP torch atomizes and ionizes the sample. The hot plasma 

gas is cooled by rapidly expanding it, and then a fraction of the gas is sampled. The gas is positively 

ionized and is separated from electrons using a negative voltage. The ions are then accelerated and 

focused based on their mass to charge ratio using magnets. Typically, ICPMS instruments can measure 

mass ranges from 30 to 300 amu, and can resolve ions differing in their mass to charge ratio by 1.56  

1.9 Autoradiography 

Autoradiography is a non-destructive method used to determine the location of radioactive material 

within a sample. It has been widely used in monitoring radioactive fallout from weapons tests or incidents 

at nuclear power plants.57 A sample is placed on photo-phosphor imaging film within a light-proof box. 

The material decays and emits particles that interact with the film, producing a black spot. The size of the 

spot is related to the number of radioactive events in that area during the film exposure, which can be 

used to identify the activity of the particle in question.57-58 For experiments herein, this technique was 

used to identify the distribution of radioactive particles (i.e. UO2) within a sample, and the imaging 

occurred over 24 hours. The plates were developed and digitized using specialized software to show 

images of the intensity of the radioactivity.  

1.10 NMR Spectroscopy 
The use of nuclear magnetic resonance (NMR) spectroscopy to identify and characterize synthesized 

compounds has been in place for decades.59 The spectrometers generally have powerful magnets on the 

order of several tesla (T), and radiofrequencies ranging from 60 to 700 megahertz (MHz).60 The frequency 
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most commonly used in the following chapters is 400 MHz. Nuclei with nonzero spin (e.g. 1H, 13C, 31P) are 

placed in the strong magnetic field and perturbed with radio waves at a given frequency. As they relax 

from the perturbation, they emit nonradiative signals which can provide specific information on the 

nucleon’s environment.59,61 In an atom, the electrons orbit the nucleus and generate a small induced 

magnetic field. This magnetic field opposes the field applied externally by the NMR spectrometer.60 If the 

magnetic field surrounding a particular nucleus is weaker than the external field, the nucleus is shielded. 

The more shielded a nucleus, the farther upfield (to the right) its resonance will appear in a spectrum.60 

As an example, if a proton is bound to an atom that is more electronegative, such as oxygen, the electron 

density is withdrawn and the proton is said to be less shielded. Its resonance will appear more downfield 

(to the left) in a spectrum.60 The position of the resonance is indicative of the amount of shielding, and 

therefore the chemical environment surrounding the proton. The structure and functional groups of a 

molecule can be determined using the position of a resonance in the spectrum as well as the number of 

resonances – indicating how many different types of protons are present; the intensity of the resonance 

– which implies how many protons of each type are present; and the splitting of the resonance signals – 

which give information related to the nearby protons.60,61 In the following chapters, NMR spectra are 

generally referenced to a deuterated solvent such as tetrahydrofuran-d8 (THF-d8) or benzene-d6 (C6D6), 

which allows for consistency in analyzing the data.  

1.11 UV-Visible-Near IR Spectroscopy 
Ultraviolet (UV) spectroscopy detects the electronic transitions of systems and can provide information 

on the conjugation of the ligand, and/or the oxidation state of the metal center.62 However, it does not 

necessarily give structural information. The UV-visible region corresponds to wavelengths of light 

between 200 and 800 nm. The Near-IR region is generally between 800 and 2500 nm.61  
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In this work, the samples are dissolved in 1 mL of a solvent such as toluene or tetrahydrofuran (THF), and 

placed in an air-tight quartz cell. The light beam passes through the sample at varying wavelengths and 

then hits a detector.62 The amount of light absorbed by the sample is calculated as an intensity ratio 

between the intensity of light from the beam (I0) and the intensity of light that reaches the detector (I). 

The wavelengths of light absorbed by the molecule in question are determined by the differences in 

electronic energy between orbitals.62 The absorption wavelengths can therefore give certain information 

about the molecule, and is generally measured by molar absorptivity (ε). Molar absorptivity (M-1cm-1) is 

calculated using Beer’s Law from the concentration of the solution and the cell path length (Equation 1), 

where A is absorbance (unit less, taken from the spectrum), c is the sample concentration (mol/L), and l 

is the path length of the cell (cm).62 

𝑨 =  𝜺𝒄𝒍 

Equation 1. Calculation of the absorbance of a molecule at a given wavelength. 

 

Samples in this discussion were collected in 0.1 cm path length quartz cuvettes loaded in the drybox using 

a PerkinElmer model Lambda 1050 UV-visible-near-infrared spectrophotometer. Samples were typically 

run at two dilutions to optimize absorbance in the UV-visible and near-IR, respectively. Sample spectra 

were obtained versus air and corrected for solvent absorption subsequent to data acquisition. 

1.12 Infrared Spectroscopy 
Infrared (IR) spectroscopy observes the vibrations (e.g. stretches, bends) of bonds and uses those 

observations to give details about the structure of the molecule. The IR region of the electromagnetic 

spectrum 800 – 100,000 nm, but is generally reported in wavenumbers (cm-1), so the region becomes 

12500 – 100 cm-1.  The most commonly used region of the infrared is 4000 to 670 cm-1.61 
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The IR spectrum is a depiction of the energy absorbed by a molecule as a function of the frequency of 

light.63 The radiation is not energetic enough to cause the type of electronic transitions seen in UV-Visible 

spectroscopy; the absorption of the radiation instead results in the stretching and/or bending of the bonds 

between atoms, and depends on the masses of the atoms and the stiffness of the bonds.61 For example, 

heavier atoms vibrate more slowly, thus the frequency of the vibration is decreased. Similarly, the weaker 

a bond between two atoms, the less frequent the vibrations.63. Because bonds can often stretch, bend, 

and twist in different directions, there are several absorptions in an IR spectrum that can result from the 

same bond.63 

For the purposes of this discussion, all of the IR spectra were taken using a Thermo Scientific Nicolet iS5 

FT-IR spectrometer, and a Golden Gate Diamond ATR (ZnSe lenses) with a reaction anvil (neat solid 

samples). The infrared light goes from the source to a diamond beamsplitter. Some of the light reflects at 

a right angle and strikes a stationary mirror, while the rest of it passes through the diamond, through the 

sample, and hits a mirror moving at a constant velocity. Both beams are reflected back into a detector. 

FT-IR spectrometers have a better signal-to-noise ratio than other types of IR spectrometers, and 

therefore are more sensitive.61  

1.13 Electrochemistry 
For the purposes of this discussion, the electrochemistry was performed in an inert-atmosphere drybox 

using either THF or trifluorotoluene (TFT). Unless otherwise noted, the electrolyte for these analyses is ~ 

0.1 M [NPr4][BArF
4]. There are three electrodes involved in the potentiometry; the reference electrode, 

which is a Ag pseudo reference that maintains constant potential through the experiment; the counter 

electrode – a platinum wire that helps balance the flow of current through the reaction; and the working 

electrode – a platinum disk electrode at which the reaction takes place.64 The cyclic voltammogram is 

given in potential (volts) vs. current (amps) and can be used to determine the oxidation state of the 
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actinide, as well as the influence of the ligand on the electrochemical potential of the molecule.64 This 

information is particularly useful when comparing the chemistry of thorium, which has no 5f-electrons, to 

that of uranium. 

The data described herein were collected with a PerkinElmer Princeton Applied Research Corporation 

(PARC) model 263 potentiostat under computer control with PARC model 270 software. All data were 

collected with positive-feedback IR compensation activated to ensure minimal contribution to the 

voltammetric waves from uncompensated solution resistance. Scan rates from 50 – 5000 mV/s were 

employed to assess the chemical reversibility of the observed redox transformations. Half-wave potentials 

were determined from the peak values in the square-wave voltammograms or from the average of the 

cathodic and anodic peak potentials in a reversible cyclic voltammogram. Potential calibrations were 

performed at the end of each data collection cycle using the ferrocenium/ferrocene couple as an internal 

standard.  

1.14 X-ray Diffraction 
When X-rays pass through a sample, such as a single crystal, the radiation interacts with the electrons in 

the matter to product scattering.56 When these X-rays are scattered by an ordered crystal, interferences 

occur between the scattered rays because the distances between the scattering centers (i.e. atoms in the 

crystal structure) are the same order of magnitude as the wavelength of radiation.56 As the X-ray strikes a 

crystal surface, only part of the beam is scattered. The remainder of the wave penetrates to the next layer 

of atoms in the crystal, and so on. The accumulation of these scatterings from the regularly spaced layers 

of crystal gives rise to information on the order of the crystal, the types of atoms present, as well as their 

distances and connectivity.56  

Data for the following experiments were collected on a Bruker D8 Quest diffractometer, with a CMOS 

detector in shutterless mode. The crystals were cooled to 100 K employing an Oxford Cryostream liquid 
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nitrogen cryostat. The data collection employed graphite-monochromatized Mo Κα (λ = 0.71073 Å) 

radiation. A hemisphere of data was collected using ω scans, with 10 s frame exposures and 0.5° frame 

widths. Data collection and initial cell refinement were handled using APEX 2 software.65 Frame 

integration, including Lorentz-polarization corrections, and final cell parameter calculations were carried 

out using SAINT software.66 The data were corrected for absorbance using redundant reflections and the 

SADABS program.67 Decay of reflection intensity was monitored through analysis of redundant frames. 

The structure was solved using direct methods and difference Fourier techniques. Unless otherwise noted, 

non-hydrogen atoms were refined anisotropically and hydrogen atoms were treated as idealized 

contributions. Structure solutions, refinement, and creation of publication materials were performed 

using SHELXTL.68 

1.15 Summary 

The presented research covers both fission product separation from a variety of targets and exploration 

of organoactinide synthetic chemistry. The first few chapters will describe the synthesis, preparation, 

irradiation, and analysis of both UO2 and uranium-based metal-organic framework targets. The results will 

describe the effectiveness of both target materials and certain acid solutions at separating fission products 

from the uranium, and will detail potential steps forward with the project. The remaining chapters detail 

the synthetic achievements of several projects involving uranium and thorium organometallic reactions 

as a means to better understand the basic chemistry of the actinides. Exploration of organoactinides with 

chalcogenides, halides, and high-nitrogen ligands will be documented, and the results will be tied in with 

nuclear forensics.  
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Chapter 2: Irradiation of UO2  
 

This chapter details the synthesis of UO2 target material, the creation of target materials, and the 

irradiation of several targets using two different methods. These methods were described in Chapter 1, 

Section 1.6. An overview of the separation method is presented here, and analysis of the irradiated targets 

using gamma spectroscopy is reported for each target material. A comparison between several targets 

contacted with different extractants is given. 

2.1. UO2 Synthesis 

2.1.1 Experimental 
The investigation of UO2 particles as potential target materials that support the goal of simple separations 

is not a novel idea; UO2 has been used as a nuclear fuel, which results in the creation of fission products, 

for decades.69-72 However, a serendipitous discovery lead to the formation of microparticles (e.g. <10 µm 

diameter) of UO2, which could prove useful for a target material. The microparticles of UO2 were created 

using depleted uranium via hydrothermal synthesis of UO2(NO3)2 with either glutamic or aspartic acid as 

the reducing ligand at 180 °C for several days. A stoichiometric ratio of 3:1 ligand:UO2(NO3)2 generated 

the highest percent yield (56%).  The resulting solid product was a fine black powder with an average 

particle size of 2.66 ± 0.76 µm, which is ideal for a target because the fission particle recoil distance is 10 

μm in UO2.8,73  A solid UO2 product did not appear when the reaction was performed at temperatures 

below 160 °C and was present only in small amounts below 170 °C.  

The UO2 was removed from the reaction vessel by decanting the solution into a centrifuge tube and 

centrifuging at 3500 rpm for 3 minutes. The liquid solution above the solid phase was removed by 

pipetting. The powder was washed with fresh DI water and centrifuged again. The powder was then 

moved to a scintillation vial and dried in the furnace at 120 °C.  
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Optical analysis of the particles was done using a Leica DM 2500 P microscope and the results are 

presented below. Powder XRD analysis establishing the identity of the crystalline sample is also presented.  

The UO2 produced via this synthetic strategy has been used as a target material to determine if it is a 

viable candidate for fission product removal, along with addition of a secondary matrix material. This 

matrix provides a backdrop onto which the fission products may embed themselves, and should therefore 

be easily soluble in aqueous solutions to increase the rapidity of the separation. It should also not interfere 

with the irradiation or data collection processes. The procedures for target synthesis, irradiation, and data 

collection and analysis are described in the sections below.  

2.1.2 Results 

As discussed previously, fine black UO2 is the product of the hydrothermal reaction of UO2(NO3)2 with 

either aspartic or glutamic acids above 160 °C. The result is easily reproducible, and an average yield of 

56% is obtained at a scale of 100 mg. The reaction has been scaled up to the 500 mg scale with an average 

79.2% yield. Several grams of material were successfully synthesized.  

Figure 17 is a microscope image of the UO2 particles. It shows that, while many of the particles have 

clumped together, there are particles smaller than the 10 µm scale bar. This is important for a target 

material as stated above.   
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Figure 17. Microscope image of UO2 particles 

Figure 18 is a powder XRD data set comparing a sample of the UO2 particles (red line) to a known uraninite 

compound (blue line). The Rietveld refinement of the XRD pattern was performed, showing the sample 

was 100% uraninite. This is evident by the evaluation in the top right corner.  

 

Figure 18. Powder XRD data of the UO2 sample compared to known uraninite 
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2.2 UO2 Dissolution 

2.2.2 Experimental 

The main goal of this experiment was to determine how much solid UO2 is present in target extraction 

solutions as a function of time using solvent mixtures designed to remove the fission products after 

samples are irradiated.  It is critical to establish the ideal solvent conditions for fission product extraction, 

while simultaneously minimizing the dissolution of the target UO2. Both HNO3 and HCl were chosen as 

extractants because those acids have been used historically to extract fission products from actinide 

materials.4 In these previous studies, 3M HNO3 and 2M H2SO4 were combined for the dissolution 

procedure of uranium metal, which has a higher density than UO2 (19.1 g/cm3 and 10.97 g/cm3, 

respectively).7 The authors report a concentration of the uranium metal dissolved in this acid mixture of 

6.30 mmol/L in under 30 minutes.4  In the experiments described herein, because the goal was not to fully 

dissolve the UO2, significantly more dilute acid solutions were tested.  

An initial study was performed using 1 M HCl. Roughly 200 mg of UO2 was added to 10 mL of 1 M HCl and 

placed on a rocking table. The solution was centrifuged and samples were collected at specified time 

intervals between 10 and 1440 minutes. Each sample was diluted and concentrations of dissolved UO2 

were determined with an ELAN DRC II ICP-MS from Perkin Elmer. A second study was performed using 

100 mg of UO2 in 10 mL 0.01 M HCl. The experiment was done exactly as described above, but with two 

additional time points of 7200 minutes and 8640 minutes to determine if the solution arrived at 

equilibrium within a week of initial contact with the acid.  A third solvation study was performed with 

roughly 50 mg of UO2 in 10 mL of 0.01 M HNO3 to determine if there was a substantial difference between 

the two acids. Apart from the amount of UO2 in the system and the acid used, the experimental conditions 

were identical to the second experiment. 
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2.2.3 Results 

The initial study was done with 234.4 mg of UO2 particles and 10 mL of 1 M HCl. As stated above, the 

solution was contacted with the particles for a specific amount of time before an aliquot of solution was 

collected. This aliquot was then diluted and examined with the ICP-MS (Figure 19). After 24 hours of 

contact with the particles, the solution measured a concentration of 238U at 8.19 mmol/L. The data 

suggests that with more time, the dissolution of UO2 would increase. 

 

Figure 19. ICP-MS data for UO2 contacted with 1 M HCl 

 The same process was then repeated with 0.01 M HCl to see if less UO2 dissolved in a weaker acid solution 

(Figure 20). In this experiment, 99.7 mg of UO2 was contacted with 10 mL of 0.01 M HCl. This time aliquots 

were taken up to 8640 minutes (6 days) to determine if equilibrium was reached. The maximum 

concentration of 238U in the solution was 6.53 mmol/L, which occurred after 6 days. After 24 hours, the 

concentration was 6.19 mmol/L. This suggests that, while some uranium is still dissolving in this weaker 

acid solution, there is less dissolution than in a 1 M HCl solution, and that after an additional 5 days of 

contact the concentration does not increase very significantly.   
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Figure 20. ICP-MS data of UO2 contacted with 0.01 M HCl 

A third experiment was done using 0.01 M HNO3 to see if the acid type affected the dissolution rates of 

UO2. This time 52.3 mg of UO2 were contacted with 10 mL of 0.01 M HNO3 for 8640 minutes (6 days). The 

solution appeared slightly darker in color than the HCl, perhaps due to better suspension of the UO2 

particles. The maximum concentration was found to be 7.00 mmol/L after 7200 minutes (5 days) (Figure 

21). However, after 6 days the concentration was slightly less. This is more likely due to error in dilution 

rather than UO2 re-precipitating into the solution. Due to the slight decrease of dissolution rate, 0.01 M 

HCl and 0.01 M HNO3 were chosen as extraction solvents in the separation experiments.  

 

Figure 21. ICP-MS data of UO2 contacted with 0.01 M HNO3 
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2.3 KBr Ratio Determination 

2.3.2 Experimental 

As previously mentioned, a matrix material was mixed with the target material to capture the fission 

products and facilitate removal. Potassium bromide was chosen as the secondary target material because 

of its low water content, its availability, and its high solubility in aqueous media. However, the neutron 

activation of KBr produces 82Br (t1/2 = 1.5 days), which has several gamma lines associated with its decay 

over a range of energies. This can cause problems when analyzing data because smaller gamma signatures 

can be masked by the larger peaks from the 82Br. Too much KBr could also act as a poison in the neutron 

flux, preventing the UO2 from interacting with enough high-energy neutrons to induce fission. The isotope 

39K has a neutron capture cross-section of 2.1 barns at neutron energies less than 0.025 eV, and 1 barn at 

neutron energies above 0.025 ev; 81Br has neutron capture cross sections of 2.4 and 51 barns, 

respectively.38 Though relatively low, these neutron capture cross sections could inhibit the neutron flux. 

However, if there is not enough KBr, the fission products may not embed themselves in the matrix and 

instead interact with neighboring UO2 particles, which may prevent their extraction. To determine the 

appropriate ratio of KBr to UO2 in a target, several pellets with varying ratios were prepared and then 

analyzed using both optical microscopy and SEM imaging.  

The ratios of KBr:UO2 investigated were 5:1, 4:1, 3:1, 2:1, and 1:1. Each mixture was vortexed to achieve 

homogeneity and then pressed into a 6mm pellet using 4 tons of pressure for 10 minutes. Each pellet was 

then analyzed using optical microscopy for a visual approximation of homogeneity. The same pellets were 

subsequently coated in carbon and imaged using scanning electron microscopy (SEM) to compare the 

ratios.  
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2.3.3 Results 

Below are the optical and SEM images of each pellet (Figure 22-26). The SEM image for the 5:1 ratio (Figure 

26) shows large pockets of KBr present. Though it is unclear if this was due to the pellet preparation or an 

excess of KBr, this ratio was disregarded as ideal. Due to homogeneity and the concerns with excess KBr, 

a ratio of 3:1 KBr:UO2 was chosen for each target irradiated at Flattop.  
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Figure 22. Optical image (top) and SEM image (bottom) of the 1:1 KBr:UO2 pellet with scale bars. In the SEM image, a lighter 
color represents a more dense material (e.g. uranium). 



 

40 
 

 

 

Figure 23. Optical image (top) and SEM image (bottom) of the 2:1 KBr:UO2 pellet with scale bars. 
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Figure 24. Optical image (top) and SEM image (bottom) of 3:1 KBr:UO2 pellet with scale bars. 
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Figure 25. Optical image (top) and SEM image (bottom) of 4:1 KBr:UO2 pellet with scale bars. 
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Figure 26. Optical image (top) and SEM image (bottom) of 5:1 KBr:UO2 pellet with scale bars. 
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2.4 Target Creation and Fission Product Extraction 

 
Unless otherwise noted, all targets were treated identically, and all target material used was depleted 

uranium.   

 

 

 

 

Table 1 lists the targets discussed in this chapter, as well as their composition, amount of UO2, and the 

acid with which it was contacted to remove the fission products. With the exception of Target 1, all of the 

targets were created in the same manner. The description of the preparation of Target 1 can be found in 

Section 2.5.2. In total, there were eight targets, seven of which were irradiated using fast neutrons from 

Flattop. Target 7 did not contain KBr in order to determine whether the secondary matrix is necessary for 

extraction. A more detailed description of Target 8 can be found in Section 2.5.3.8. 

The KBr (99% Sigma Aldrich) was used as a matrix to suspend the target and to facilitate the collection of 

fission products from the UO2. It is possible that some fission products may become embedded in 

neighboring UO2 particles, but the mild acid treatment used to dissolve the KBr post-irradiation should 

remove those products as well as fission products trapped in the KBr matrix.  The KBr was dried in a 

furnace at 180 °C for several days prior to use to remove excess moisture. The UO2 and KBr (unless 

otherwise noted) were vortexted together in a 20 mL scintillation vial until the mixture appeared 

homogenous. The target material was placed in a 6 mm KBr pellet die (Figure 27) and pressed into a pellet 
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under 2 tons of pressure for ten minutes (Figure 28). The resulting pellet was wrapped in aluminum foil 

to prevent the spread of contamination and placed into aluminum sample holders (Figure 29).  

 

 

 

 

Table 1. Description of all targets discussed in this chapter 

Target Composition (mass ratio) UO2 (mg) Neutron Source Extractant 

1 UO2:5KBr 227.9 DPF 0.01 M HCl 

2 UO2:3KBr 23.8 Flattop 0.01 M HCl 

3 UO2:3KBr 23.1 Flattop 0.01 M HCl 

4 UO2:3KBr 23.4 Flattop 0.1 M HNO3 

5 UO2:3KBr 24.2 Flattop 0.1 M HCl 

6 UO2:3KBr 23.1 Flattop 0.01 M HNO3 

7 UO2 21.3 Flattop 0.01 M HNO3 

8 UO2 foam 31.7 Flattop 0.01 M HCl 
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Figure 27. KBr pellet die (6 mm) 

 

Figure 28. Pellet press with die 

 

Figure 29. Example of a target prepared to irradiation at Flattop (ruler is in cm). 
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Figure 30. Examples of sample holders labeled for an irradiation. The foil-wrapped targets at the bottom of the image were 
placed into their respective sample holders. 

 

Each target (Figure 30) was irradiated and returned to UNLV within 36 hours. After removal from its 

sample holder, the target was placed in a 15 mL plastic centrifuge tube containing 5 mL of its respective 

acid extractant (Table 1). It was vortexed for 2 minutes to facilitate the dissolution of the KBr (where 

applicable), placed on a rocking table for 6 minutes, and then centrifuged at 1500 rpm for 2 minutes. The 

liquid and the solid were then separated and placed into individual 5 mL plastic scintillation vials. Each vial 

was counted on a closed-end coaxial Canberra HPGe gamma counter (relative efficiency of 60%) for 1 

hour. The solid material was then returned to the 15 mL centrifuge tube and contacted with 5 mL of fresh 

acid. Aliquots (2 mL) were removed at 30 minutes, 60 minutes, and 13 hours, unless otherwise noted. 

Each aliquot was counted separately on an HPGe detector for 1 hour. Prior to each experiment, a 

calibration of the detector and a background measurement of the pure acid blank were done.  

Extraction percentages were calculated according to Equation 2. The numerator is the total counts for a 

nuclide in all liquid samples (e.g. the original contact and all aliquots). This indicates how many counts 

were extracted from the solid over the course of the experiment. The denominator is the total counts in 
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the original two samples (e.g. the target). The error in extraction is calculated according to Equation 3. An 

example of these calculations is given in Scheme 1. 

% 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 =  
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑙𝑖𝑞𝑢𝑖𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑜𝑙𝑖𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100 

Equation 2. Calculating the extraction percentage of fission products 

 

  𝑠𝑞𝑟𝑡 (
(𝑐𝑜𝑢𝑛𝑡𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑)

(𝑐𝑜𝑢𝑛𝑡𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑)2 +
(𝑐𝑜𝑢𝑛𝑡𝑠 𝑡𝑜𝑡𝑎𝑙)

(𝑐𝑜𝑢𝑛𝑡𝑠 𝑡𝑜𝑡𝑎𝑙)2) = 𝑒𝑟𝑟𝑜𝑟 

Equation 3. Calculation of error 

 

% 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 =  
6869 𝑐𝑜𝑢𝑛𝑡𝑠

9949 𝑐𝑜𝑢𝑛𝑡𝑠
∗ 100 = 69.04 % 

𝐸𝑟𝑟𝑜𝑟 = 𝑠𝑞𝑟𝑡 (
(6869)

(6869)2
+ 

(9949)

(9949)2) = 0.016 

69.04% ∗ 0.016 = 1.08 % 𝑒𝑟𝑟𝑜𝑟 

Scheme 1. An example of calculations of percent extraction and error for 131I. 

Any targets that had KBr present showed peaks from the activation product 82Br at several different 

energies in the gamma spectra. This can lead to problems with obscuring fission products by either 

appearing at similar energies, or obscuring small peaks. The solids and the original liquids for any target 

with KBr were recounted for 24 hours each after two weeks to allow for the decay of 82Br. More than 99.8 

% of the 82Br, which has a half-life of 1.47 days,38 had decayed to stable 82Kr and was no longer visible in 

the spectrum. Table 2 lists the half-lives of isotopes present in the separation, as well as their respective 

daughters and daughter half-lives. Short lived, stable, and gamma stable daughters are not seen in the 

gamma spectrum. Those that are measured using gamma spectroscopy can be used to confirm the 

presence of their parent in the original spectra.  
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Table 2. Data for daughters of fission products.38 vw = very weak 

Fission  Product T1/2 Daughter Product T1/2 Daughter Energy 
(keV) 

143Ce 1.38 d 143Pr 13.57 d vw 
239Np 2.36 d 239Pu 2.41E4 y vw 
147Nd 10.98 d 147Pm 2.62 y vw 

99mTc/99Mo 6 h/66 h 99Tc 2.13E5 y vw 
141Ce 32.5 d 141Pr stable N/A 
132Te 3.2 d 132I --> 132Xe 1.3 h -> stable N/A 
135Xe 9.14 h 135Cs 2.3E6 y no γ 
97Zr 16.75 h 97Nb --> 97Mo 1.23 h -> stable N/A 
93Y 10 h 93Zr 1.5E6 y vw 
135I 6.6 h 135Xe --> 135Cs 9.14 h -> 2.3E6 y no γ 

149Pm 53 h 149Sm stable N/A 
133I 20.8 h 133Xe 5.24 d 80.99 

105Rh 35 h 105Pd stable N/A 
151Pm 28 h 151Sm 90 y vw 
103Ru 39 d 103Rh stable N/A 
140Ba 12.7 d 140La 1.68 d 1596.2, 487.0, 

815.8, 328.8 
95Zr 64.02 d 95Nb 34.99 d 765.8 
91Sr 9.5 h 91Y 58.5 d vw 
82Br 1.47 d 82Kr stable N/A 

 

2.5 UO2 Irradiation 
 

Each irradiation on Flattop was carried out during a previously scheduled run by colleagues at Los Alamos 

National Laboratory, Lawrence Livermore National Laboratory, or Pacific Northwest National Laboratory, 

who graciously allowed additional samples to be added to their experiments. Due to the non-central 

location of the samples, exact data regarding the fluence (flux per unit time) and positioning of the 

samples within the core were not available. To negate the differences in these variables between 

irradiations, the experiments described below use percent extraction from the solid material as a means 

to describe the effectiveness of a separation (Equation 2).  
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2.5.2 Dense Plasma Focus 

2.5.2.1 Experimental 

Only Target 1 was sent to the Dense Plasma Focus (DPF) at the NSTec North Las Vegas site. For the creation 

of the UO2 neutron irradiation target, KBr was mixed with microparticulate UO2 powder in a 5:1 KBr:UO2 

weight ratio (891.9 mg KBr : 227.9 mg UO2 total) and two pellets were pressed with this mixture. This ratio 

of KBr to UO2 was chosen in order to increase the amount of material contained within the target without 

adding more UO2. The two pellets were sealed in a glass ampoule using a flame, creating a sealed target 

for the samples of approximately 2.3 cm in length (Figure 31). 

 

 

 

 

 

 

Figure 31. A series of images showing the creation of the UO2/KBr target 

The target was irradiated for three days with a total fluence of 1013 neutrons. Once the irradiated target 

was returned, the glass tube was broken and both pellets were removed. The separation was performed 

as described in Section 2.4, although aliquots were removed at 5, 10, and 15 minutes. The gamma activity 

of the UO2 microparticles, the acid solution, and each aliquot were obtained by counting the samples for 

three days using an HPGe detector (relative efficiency of 60%.  

2.5.2.2 Results 

Based on the gamma data from this experiment, the fluence and/or energy of the neutrons were not high 

enough to induce many fission events. There are, however, many signatures stemming from 82Br in the 

solution spectrum due to the neutron activation of the KBr. In addition, 40K is evident from the neutron 

activation of the glass ampoule, as well as the KBr.  
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Figure 32. Gamma spectrum of UO2 solid target from DPF irradiation 

 

The spectrum in Figure 32 shows the data from the UO2 solid after it had been contacted with 0.01 M HCl. 

Very few lines are seen in the spectrum, indicating a lack of fission products. A small amount of 82Br and 

40K are present. The high counts in the lower energy region are likely due to X-rays, as the detector was 

not shielded from external X-rays.  

The data for the 0.01 M HCl solution post-separation (Figure 33) mainly shows 82Br, but almost no fission 

products. Table 3 lists the gamma ray energies and their intensities for 82Br; these energies match with 

the major peaks present in Figure 33. Because the results show a lack of fission events, and therefore a 

negligible separation of fission products, future samples were not irradiated at the DPF. It was determined 

that either higher energy neutrons or a higher fluence of neutrons would be necessary to get better 

results. The remainder of the irradiation experiments were therefore carried out using the criticality 

device “Flattop”.  
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Figure 33. Gamma spectrum of 0.01 M HCl solution after contact with the target for 10 minutes. 

 

Table 3. Gamma energies from 82Br and their intensities.74 

Energy (keV) Intensity (%) 

221.48 2.26 

554.35 71.1 

619.11 43.5 

698.37 28.3 

776.52 83.4 

827.83 24.0 

1044.00 28.3 

1317.47 26.8 

1474.88 16.6 
 

2.5.3 Flattop 

The remainder of the targets were irradiated using Flattop at the National Criticality Experiments Research 

Center (NCERC) at the Nevada National Security Site (NNSS). Flattop is a criticality device (see Chapter 1, 

Section 1.6.2) that produces high-energy neutrons with a constant fluence. The majority of the targets 

described below were irradiated during different experiments.  
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2.5.3.1 Target 2 

The target was prepared as described in Table 1, with 23.8 mg of dUO2 and a 3:1 ratio of KBr to UO2. The 

separation was done with 0.01 M HCl and proceeded as described in Section 2.4, with aliquots removed 

at 10, 15, 30, and 60 minutes. This irradiation produced significantly more fission and activation products 

than the irradiation using the DPF (Figure 34). There was also a large amount of 82Br present from neutron 

activation of KBr (not shown). The isotopes 147Nd, 149Pm, and 105Rh were all extracted with yields greater 

than 50% in this experiment. The data for these isotopes and select others are shown in Table 4. The 

isotopes presented in Table 4 were chosen because of their presence in all of the targets studied, with the 

exception of 99Mo. Some of the isotopes are also of interest to the medical field (i.e. 131I) or because of 

their inclusion in the epsilon phase of irradiated material (i.e. 105Rh).38 The target was only contacted with 

extractant for 1 h; perhaps a longer contact time will lead to a better yield of fission products extracted.  

Table 4. Select fission products and their percent extraction from Target 2 in 60 minutes.  

Nuclide Energy (keV) Percent Extraction 

143Ce 293.8 25.87 ± 0.59 

239Np 104 26.75 ± 0.18 

147Nd 91.04 52.69 ± 1.00 

99Mo 181 0.00 ± 0.00 

93Y 267.22 0.00 ± 0.00 

149Pm 285.7 65.86 ± 1.70 

105Rh 319.57 92.01 ± 1.86 

131I 364.63 30.64 ± 0.85 
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Figure 34. Bar chart describing the percent extraction of certain fission products from the target using 0.01 M HCl over 1 hour. 
Error bars are present, but may be too small to see in some cases. 

 

2.5.3.2 Target 3 

Target 3 contained 23.1 mg of dUO2 and 71.9 mg of KBr and was stored in an inert atmosphere dry box 

between preparation and shipment. The irradiation and separation were completed as detailed above 

using 0.01 M HCl. Figure 35 shows a graphical representation of the fission products extracted from the 

target. Error was calculate according to Equation 3 (page 48). The 0.01 M HCl was reasonably effective at 

removing several fission products, including 93Y and 131I (Table 5). The particular isotopes listed in Table 5 

are the same as in Table 4; however, they were extracted over 13 hours. Also listed in Table 5 are the 

major gamma decay branching energy for each isotope, the raw counts in the target material prior to 

extraction, as well as the raw counts extracted into the liquid phase. Some fission products, such as 99Mo 

were not extracted at all. There are a number of counts due to 99Mo present in the solid material, but not 

in the 0.01 M HCl extractant. This was the only acid that did not extract 99Mo, perhaps because it wasn’t 

concentrated enough.   
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Table 5. Percent extraction data for specific isotopes from Target 3 using 0.01 M HCl over 13 hours. 

Nuclide Energy (keV) Raw Counts 
from Target 

Raw Counts 
Extracted 

Percent Extraction 

143Ce 293.8 16763 9752 53.58  ± 0.74 
239Np 106.27 103449 13365 12.92  ± 0.12 
147Nd 91.04 15303 8317 54.25  ± 0.74 
99Mo 181 4488 0 0.00 ± 0.00 

93Y 267.22 8260 6655 77.20  ± 1.26 
149Pm 285.7 3184 189 5.94  ± 0.44 
105Rh 319.57 10443 6993 66.96  ± 1.03 

131I 364.63 9474 6988 73.76  ± 1.16 

 

 

 

Figure 35. Bar chart describing the percent extraction of certain fission products from Target 3 using 0.01 M HCl. Error bars are 
present, but may not be visible on all data. 
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2.5.3.3 Target 4 

Target 4 was prepared similarly to the previous targets using 23.4 mg UO2 and 72.3 mg KBr, and contacted 

with 0.1 M HNO3 after irradiation. After a period of 13 hours in contact with 0.1 M HNO3, most of the 

remaining solid material had completely dissolved. Any results were therefore artificially high (Figure 36). 

Several isotopes, including 143Ce, were extracted with high yields (Table 6), which is unsurprising given 

that the target material entirely dissolved. Table 6 lists the raw counts in the original target material for 

each isotope, along with the raw counts that were extracted from the target. The energies for each nuclide 

can be found in Table 5. 

Table 6. Percent extraction of certain fission products from Target 4 using 0.1 M HNO3 over 13 hours. 

Nuclide Raw Counts 
from Target 

Raw Counts 
Extracted 

Percent Extraction 

143Ce 9646 7392 76.63  ± 1.18 
239Np 63586 16976 26.70  ± 0.23 
147Nd 12664 7702 60.82  ± 0.88 
99Mo 7259 5457 75.18 ± 1.35 

93Y 5766 4936 85.61  ± 1.66 
149Pm 1326 151 11.39  ± 0.98 
105Rh 6470 5328 82.35  ± 1.52 

131I 6206 5438 87.62  ± 1.63 
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Figure 36. Bar chart describing the percent extraction of fission products from Target 4. Error bars are present, but may be too 
small to see. 

 

2.5.3.4 Target 5 

Target 5 was a UO2:3KBr target composed of 24.2 mg UO2 and 72.8 mg KBr. It was stored in an inert 

atmosphere dry box for three months prior to usage. Target 5 remained intact throughout the irradiation 

and transport. It was treated identically to previous targets using 0.1 M HCl as the extractant.  

Table 7 lists some of the fission products extracted using 0.1 M HCl, their raw counts present in the target 

material, their raw counts extracted, and the percent extraction from the target material. The more 

concentrated HCl extracted 99Mo better than the 0.01 M concentration, though the yield is still not good. 

High amounts of 131I and 105Rh were also extracted, but the yield of 93Y decreased significantly compared 

to previous targets. Figure 37 depicts the percent extraction of certain fission products from Target 5.  

 



 

58 
 

Table 7. Extraction percentages of certain fission products from Target 5 using 0.1 M HCl over 13 hours. 

Nuclide Raw Counts 
from Target 

Raw Counts 
Extracted 

Percent Extraction 

143Ce 22714 10974 48.31  ± 0.56 
239Np 202180 25583 12.65  ± 0.08 
147Nd 27572 11431 41.46  ± 0.46 
99Mo 6220 141 2.27  ± 0.19 

93Y 2765 196 7.09  ± 0.52 
149Pm 4558 330 7.24  ± 0.41 
105Rh 12368 7105 57.45  ± 0.86 

131I 11723 7996 68.21  ± 0.99 

 

Only 105Rh and 131I were extracted with greater than 50% yield using 0.1 M HCl. More than 40% of the 

isotopes 143Ce and 147Nd were extracted, and all other fission products were extracted with less than 40% 

yields (Table 7). This shows that 0.1 M HCl is not the acid concentration to use to extract the highest 

percentage of fission products. However, many types of fission products were present in the extractant, 

including fission products of interest to the medical community, such as 99Mo, 99mTc, and 131I.  

 

Figure 37. Bar chart describing the percent extraction of certain fission products from Target 5. Error bars are present, but may 
be too small to see. 
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2.5.3.5 Target 6 

Target 6 was prepared similarly, but it was composed of 23.1 mg UO2 and 73.6 mg of KBr. It was broken 

into several large pieces when the sample holder was opened after the irradiation. The target did not 

dissolve in this case, but did have higher yields of extraction than either target contacted with HCl (Table 

8). Table 8 lists the raw counts from the target material as well as the raw counts extracted using 0.01 M 

HNO3.  Figure 38 shows the extraction percentage of fission products using 0.01 M HNO3 as the extractant. 

This acid was also the one to remove the most 99Mo – an important fission product in medical imaging. 

Because of its ability to remove 99Mo, and the fact that it did not dissolve the target material, 0.01 M HNO3 

was chosen as the extractant to use for future target separations.  

Table 8. Extraction of certain fission products from Target 6 using 0.01 M HNO3 over 13 hours. 

Nuclide Raw Counts 
from Target 

Raw Counts 
Extracted 

Percent Extraction 

143Ce 16132 7952 49.29 ± 0.68 
239Np 96242 15238 15.83 ± 0.14 
147Nd 14977 8425 56.25 ± 0.77 
99Mo 5224 569 10.89 ± 0.48 

93Y 3161 196 6.20 ± 0.46 
149Pm 4061 1053 25.93 ± 0.90 
105Rh 9958 5837 58.62 ± 0.97 

131I 9949 6869 69.04 ± 1.08 
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Figure 38. Bar chart describing the fission products extracted from Target 6. Error bars are present in the figure. 

2.5.3.6 Target 7 

Target 7 was comprised of only UO2 (21.3 mg) without the KBr in order to ascertain the necessity for a 

matrix in these separations. The target was prepared, irradiated, and analyzed via the standard route 

described using 0.01 M HNO3. 

A BEGe detector (Figure 39) was set up for use, and the samples were measured 10 days after the 

irradiation. The samples were counted for 3 hours, but otherwise were treated identically to the 

experiments previously described. The data for the UO2 target (Figure 40) shows that an absence of some 

form of secondary matrix decreases the extraction potential of the target. In some cases, the fission 

products could not be extracted as well from this UO2 target compared to its matrix-containing 

counterpart. Table 9 describes certain fission products and their extraction yields from Target 7, including 

their raw count extractions from the target material. These data show clearly that fission products are 

extracted in much smaller yields when no secondary matrix is present.  
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Figure 39. BEGe detector 

 

Figure 40. Bar chart describing the percent extraction of fission products from Target 7 - the UO2 target that did not have any KBr 
matrix. Error bars are present, but may be too small to see.  
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Table 9. Extraction of certain fission products from Target 7 using 0.01 M HNO3 over 13 hours. 

Nuclide Raw Counts 
from Target 

Raw Counts 
Extracted 

Percent Extraction 

143Ce 0 0 0.00 ± 0.00 
239Np 17442 2102 12.05 ± 0.28 
147Nd 0 0 0.00 ± 0.00 
99Mo 611 74 12.11 ± 1.49 

93Y 3634 460 12.65 ± 0.21 
149Pm 0 0 0.00 ± 0.00 
105Rh 528 140 26.52 ± 2.52 

131I 176 0 0.00 ± 0.00 

 

 

 

2.5.3.7 Comparison of Targets 3-7 

Target 3-7 can be compared because they were contacted with their respective acids for 13 hours, with 

aliquots extracted at the same times during the experiments. All of the samples were counted in 5 mL 

clear plastic scintillation vials, placed approximately the same distance away from the detector, so they 

have similar geometries. 

Table 10 lists the raw counts and the percent extractions of certain nuclides for Targets 3-7. There are 

nuclides that were only extracted with the HNO3, such as 141Ce, 151Pm, and 103Ru, and others, such as 140Ba 

that were only extracted with HCl. This indicates that different extractants could be used depending on 

the fission products of interest. Figure 41 is a graph showing the extraction percentages for certain 

isotopes based on the extractant (e.g. concentration and type of acid) compared to the target with no KBr 

matrix material (black bars). These data clearly show that the hypothesis was correct: the presence of a 

matrix material increases the percentage, and number, of isotopes extracted into solution. In most cases, 

it is obvious that HNO3, though more dilute, is a better extractant than HCl. This is not surprising, as the 

ICP-MS results discussed earlier in this chapter show that HNO3 is slightly better than HCl at dissolving the 
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UO2 particles over time. A slight dissolution of the particles, perhaps only of the outermost layers, could 

easily result in a better extraction of fission products. It is entirely possible that the fission products 

escaped from one particle and embedded themselves in another, rather than in the KBr. For future 

targets, 0.01 M HNO3 was used as the extractant due to its ability to extract a general range of fission 

products in good yields without dissolving the target material.  
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2.5.3.8 Target 8 

Target 8 was comprised of a microporous UO2 “foam” sent from colleagues at LANL. It was synthesized by 

laser-induced reduction of the high-nitrogen uranyl complex UO2(BTA) (BTA = bistetrazoleamine). The 

material was sent to UNLV in sealed ampoules and stored in an inert atmosphere dry box until the 

preparation of the target began. No KBr was used in this target as the foam was porous and could have 

been able to trap the fission products in the pores. The final pellet weight was 31.7 mg. Though 

microscope analysis of the pellet did not show pores on the surface, it was assumed that the foam retained 

its porosity. The pellet was wrapped in premium aluminum foil to prevent the spread of contamination 

should the pellet break upon opening, and then placed in an aluminum sample holder like those described 

above.  

The target itself was broken into several large pieces post-irradiation; whether it was destroyed due to 

irradiation damage, transport damage, or damage when the sample holder was opened is unclear. All of 

the pieces were transferred to a 15 mL plastic centrifuge tube with 5 mL of 0.01 M HCl and the separation 

was completed as normal. Each gamma spectrum was background corrected and analyzed for fission 

products. The extraction results from the UO2 foam sample were less than 8% for most of the fission 

products (Figure 42). This lack of extraction could be due to a structural change in the foam when it was 

pressed into a pellet, or the pores could have been too small to allow for the release of fission products. 

The percent extraction of specific nuclides, as seen for previous targets, along with the raw counts found 

in both the target material and the extractants, are shown in Table 11. Nuclides such as 99Mo and 149Pm 

are not seen at all in the extractant, and the extraction of 239Np is negligible. Clearly, the nanoporous foam 

material is not a good example of a target material in terms of extraction of fission products.  
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Table 11. Extraction of certain fission products from Target 8. 

Nuclide Energy (keV) Raw Counts 
from Target 

Raw Counts 
Extracted 

Percent Extraction 

143Ce 293.8 37978 3618 9.53 ± 0.17 
239Np 106.27 234120 2003 0.86 ± 0.02 
147Nd 91.04 22378 850 3.80 ± 0.13 
99Mo 181 0 0 0.00 ± 0.00 

93Y 267.22 10996 699 6.36 ± 0.25 
149Pm 285.7 0 0 0.00 ± 0.00 
105Rh 319.57 17741 856 4.82 ± 0.17 

131I 364.63 13635 1043 6.43 ± 0.22 

 

 

Figure 42. Extraction percentages of the dUO2 foam sample. Error bars are present, but may be too small to be visible on some 
bars. 

 

The poor extraction potential of the nanoporous foam target could also be due to a lack of secondary 

matrix. Because there was no matrix, such as KBr, onto which the fission products could embed, they may 

have travelled too deep within the UO2 to be removed by the dilute HCl. The nanoporous foam UO2 sample 
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can be compared to the UO2 microparticle target without KBr present (Target 7). Though the extractant 

used differed between the two samples, the differences in extraction capability between 0.01 M HCl and 

0.01 M HNO3 is not drastic. Table 12 describes the comparison between the extraction of certain fission 

products from Target 7 (0.01 M HNO3) and Target 8 (0.01 M HCl). While the results show that more 

products were extracted from Target 8, the yields were much lower than for Target 7, the UO2 target 

without KBr present, particularly in the case of 105Rh.  

Table 12. Comparison of the extraction of certain fission products from Target 7 and Target 8 

Nuclide Target 7 Results Target 8 Results 
143Ce 0.00 ± 0.00 9.53 ± 0.17 
239Np 12.05 ± 0.28 0.86 ± 0.02 
147Nd 0.00 ± 0.00 3.80 ± 0.13 
99Mo 12.11 ± 1.49 0.00 ± 0.00 

93Y 12.65 ± 0.21 6.36 ± 0.25 
149Pm 0.00 ± 0.00 0.00 ± 0.00 
105Rh 26.52 ± 2.52 4.82 ± 0.17 

131I 0.0  0.00 6.43 ± 0.22 
 

2.6 Conclusions 
The data presented in this chapter show that the use of a secondary matrix, such as KBr, can increase the 

amount and yield of fission products extracted from the target. In most cases, the UO2 was not dissolved 

during the course of the experiment, and so it can be concluded that it is possible to extract a reasonable 

percentage of fission products using this rapid method. Though the method needs to be optimized, it does 

show a proof-of-principle that can be changed based on the target material, or fission products of interest. 

The use of a secondary matrix other than KBr should be looked at in the future. In the neutron flux, the 

bromine is activated to give 82Br, which is a short-lived isotope with many gamma signatures. These extra 

signatures in the gamma spectrum often complicate the data and make it difficult to extract data for 

nuclides of importance. Some form of salt that does not activate to give a gamma-emitting isotope would 
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be beneficial. An example is potassium iodide (KI). The iodine would activate to give the short-lived 

isotope 128I (t1/2 = 25 min),38 which decays to stable 128Xe. The gamma signatures from 128I would not be 

visible in the spectrum by the time the material is being counted because the target materials do not 

return to UNLV until roughly 24-36 hours after irradiation.  

Some fission products were extracted into certain acid solutions more effectively than others. For 

example, 99Mo was extracted into 0.01 M HNO3 and 0.1 M HCl in yields high enough to be measured. 

However, it was not extracted into 0.01 M HCl. This acid solution may be too dilute to effectively dissolve 

99Mo and remove it from the target. Other fission products were extracted well into any solution. 

Examples include 105Rh, 131I, and 131I. Iodine, particularly in the form of potassium iodide, is quite soluble 

in aqueous solutions. If the iodine ions are interacting with the KBr matrix, its extraction potential may 

increase.75 The interaction with a variety of ions present may also increase the solubility of rhodium. 

Similarly, 97Zr could interact with the KBr to form ZrBr4, which reacts with aqueous solutions and may 

increase the extraction potential in all of the tested acid solutions. Other fission products may react with 

the KBr matrix, the acid, or oxygen to form insoluble compounds. These insoluble compounds would 

remain with the solid UO2 target material rather than being extracted into the aqueous solutions, and 

would not appear by gamma spectroscopy to have been extracted from the target. The addition of such 

a small amount of precipitated solid in the UO2 sample would be negligible.  
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Chapter 3: Irradiation of MOFs  

 

3.1 Introduction 
As stated in Chapter 1 Section 1.4 metal-organic frameworks (MOFs) are composed of metal centers linked 

with organic ligands. The organic linkers control the size, shape, and functionality of the pore in the 

material. In the case of this work the pores can be used to allow the removal of fission products via a 

solvent rinse. The nature of the linker molecules was confined to dicarboxylic acids to simplify the project 

and allow for easier comparisons between samples. A number of examples of uranium-carboxylic acid 

frameworks can be found in the literature.18,25-35,76,77 The Cahill group at The George Washington 

University has been exploring uranyl-containing MOFs since 2006,18,28,29,33-35 including several 

pyridinedicarboxylic acid-based frameworks discussed in this chapter.34,35 The Thuéry group at the 

Université Paris-Saclay in France has had several publications in the past decade on uranyl-organic 

frameworks using carboxylic acid linker molecules, such as phenyl- and cyclohexyl-based acetates.30-32 The 

Loiseau group at the Université de Lille Nord de France has been studying polycarboxylate molecules as 

linker groups for uranyl-based MOFs for several years, including a structure described in Section 3.3.2.4.78 

The work in this chapter includes irradiations of previously published materials by these and other groups.  

Table 13 describes each of the MOF targets discussed in this chapter, its corresponding organic ligand, the 

amount of material present in the target, and the extractant used to remove the fission products.  Each 

MOF was synthesized using depleted uranium. The four ligands are 2,6-pyridinedicarboxylic acid (2,6-

pydc), 2,5-pyridinedicarboxylic acid (2,5-pydc), 2,4-pyridinedicarboxylic acid (2,4-pydc), and pyromellitic 

acid (prma). They are described in detail in Section 3.2. 
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Table 13. Description of all targets discussed in this chapter, the organic ligand present in the framework, and the extractant 
used. 

Target Ligand Target Mass (mg) Extractant 

1 2,6-pydc 36.0 0.01 M HCl 

2 2,6-pydc 24.4 0.01 M HNO3 

3 2,5-pydc 24.6 0.01 M HNO3 

4 2,4-pydc 26.5 0.01 M HNO3 

5 prma 26.5 0.01 M HNO3 

 

3.2 Synthesis of MOFs 
The general synthetic route was similar for all of the targets discussed in this chapter. Approximately 100 

mg of UO2(NO3)2, one equivalent of the respective ligand (2,6-pydc, 2,5-pydc, 2,4-pydc, or prma), 5 µL of 

NH4OH, and 2 mL of DI H2O were added to a hydrothermal cell. An explanation of hydrothermal chemistry 

is given in Chapter 1, Section 1.5. The reaction proceeded at 150 °C for 24-48 hours before the cell was 

cooled to room temperature and opened. The yellow product material was harvested, washed with DI 

H2O and dried in a furnace at 100 °C. The ligands and the MOF frameworks are described in Sections 2.1-

2.4.  

3.2.1 2,6-pyridinedicarboxylic acid 

One ligand used was 2,6-pyridinedicarboxylic acid (2,6-pydc, Figure 43). Examples of UO2-2,6-pydc 

frameworks exist in literature;34,35 however, the majority of the structures show linear geometry. The UO2-

2,6-pydc material produced in this work exhibits helical geometry, which has not been well represented 

in previous literature. In fact, as of this writing, few examples of helical uranium compounds have been 

published,76,79 although many transition-metal helical MOFs exist.80-82 
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Figure 43. 2,6-pyridindicarboxylic acid molecule. 

This unique uranium framework crystallizes in 1D chiral spirals, or helices, in the space group P65 (or P61; 

both left- and right-handed versions of the helix exist) and was first published in 1975 by Immirzi et.al.76 

A second, non-helical structure was discovered and published by Cahill et.al. in 2006.35  The material in 

this work was isolated as a mixture of yellow crystalline clumps and yellow rod-shaped crystals (Figure 

44). X-ray diffraction analysis shows the clumps are the same material that was reported by Cahill.35 The 

fragile rod-shaped crystals are helical, with a pore size of 8 Å (Figure 45).76 Targets 1 and 2 were comprised 

of UO2-2,6-pydc helical crystals, which were chosen in lieu of the clumps due to their more consistent 

porosity.  

 

Figure 44. Microscope image of the material showing both crystalline clumps and rod-shaped crystals. 

Clump 

Rod 
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Figure 45. Structure of UO2-2,6-pydc rod-shaped helical crystals 

 

3.2.2 2,5-pyridinedicarboxylic acid 

This framework uses a 2,5-pydc ligand (Figure 46), which is very similar to the 2,6-pydc ligand described 

above, however it does not have a helical crystal structure. Its structure has also been previously reported 

by Cahill et.al.29 The framework published by Cahill has a pore size of 9.5 x 6.1 Å and a monoclinic crystal 

structure in the P21/n spacegroup (Figure 47).34 The pores are larger in one dimension than the 2,6-pydc 

framework, but they are less symmetrical. Target 3 was a pressed pellet of yellow, microcrystalline UO2-

2,5-pydc material.  

 

 

Figure 46. 2,5-pyridinedicarboxylic acid molecule 



 

74 
 

 

Figure 47. Crystal structure of UO2-2,5-pydc as viewed down the x-axis. Red atoms are oxygen, light blue atoms are nitrogen, grey 
atoms are uranium, and black atoms are carbon.  

3.2.3 2,4-pyridinedicarboxylic acid 

In order to complete the series, the UO2-2,4-pydc MOF was also irradiated. As with the previous MOFs, 

this framework uses 2,4-pydc linker molecules (Figure 48), and its synthesis and structure were previously 

published by Cahill with a pore size of 6.8 Å (Figure 49).29 The crystal structure is also different from the 

previous MOFs; this material crystallizes in the orthorhombic space group Pca21. The pore size is 

significantly smaller than that of the the previous two frameworks. Target 4 was comprised of 

microcrystalline UO2-2,4-pydc material.  

 

Figure 48. 2,4-pyridindedicarboxylic acid linker 
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Figure 49. Crystal structure of UO2-2,4-pydc viewed down the x-axis. Red atoms are oxygen, blue atoms are nitrogen, grey atoms 
are uranium, and black atoms are carbon. 

3.2.4 Pyromellitic Acid 

Pyromellitic acid (prma, also called 1,2,4,5-benzenetetracarboxylic acid, Figure 50), has a history of use in 

metal-organic frameworks; its four coordination sites give rise to more flexibility in the system, leading to 

multi-dimensional frameworks with large channels.83-85 Louiseau et.al. reported the 3D crystal structure 

of (UO2)2(H2O)2(btec)·H2O in 2012;78 the yellow rod-shaped crystals are orthorhombic in the Pbcn space 

group. The framework is created through the four carboxylate arms of the pyromellitic acid linkers. 

 

Figure 50. Structure of prma 

The resulting material could be isolated as a clump of yellow rod-shaped crystals (Figure 51), or as yellow 

semi-crystalline powder. Single crystal XRD analysis shows the crystals match the structure reported by 
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Loiseau et.al., with a pore size of 7.3 Å (Figure 52).78 Target 5 was microcrystalline UO2-prma MOF 

material.  

  

Figure 51. Microscope image of UO2-prma. 

 

 

Figure 52. Structure of UO2-prma with water in the channels as reported by Loiseau et.al.78 
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3.3 Target Production 

3.3.1 Target 1 – UO2-2,6-pydc 

To produce Target 1, the small rod-shaped crystals of UO2-2,6-pydc were separated by hand from the 

larger yellow crystalline clumps (Figure 44). The isolated rods were then suspended in DI H2O, and 

transferred to a pre-cut piece of premium aluminum foil. The target material (36.0 mg of UO2-(2,6-pydc) 

helices) was adhered to the foil by evaporation of the water in a furnace at 60 °C, and then wrapped in an 

aluminum sample holder ( 

 Figure 53).  

 

 Figure 53. UO2-(2,6-pydc) target after being dried on the aluminum foil 

 

 

3.3.2 Targets 2-5 

Table 14 lists the ligand framework and the total mass of each target. All four targets were created the 

same way: by pressing the semi-crystalline material into 6 mm pellet at 2 tons for 10 minutes. The pellets 

were thin and fragile (Figure 54), and occasionally broke into a few pieces during the process of wrapping 
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in aluminum foil. Each foil-wrapped target was sealed in an aluminum sample holder like those described 

in Chapter 2 Section 2.4. 

Table 14. List of targets 2-5 

Target Ligand Target Mass (mg) 

2 2,6-pydc 24.4 

3 2,5-pydc 24.6 

4 2,4-pydc 26.5 

5 prma 26.5 

 

 

Figure 54. Target 3 – UO2-2,5-pydc 

3.4 Irradiation and Target Treatment 
Prior to irradiation, a sample of each MOF material was contacted with acid (0.01 M HCl or 0.01 M HNO3) 

to confirm that the target material would not be soluble in it. This ensures that any dissolution of the 

irradiated sample is due to weakening of the framework backbone from irradiation events. None of the 

MOF materials were soluble in their respective acids prior to irradiation (Figure 55). 
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Figure 55. MOF material was contacted with acid for a 24 hour period to ensure insolubility prior to irradiation. 

All targets were irradiated using fast neutrons from Flattop (Chapter 1, Section 1.6.2). The targets were 

not irradiated at the same time, and thus have different irradiation variables such as fluence, duration of 

irradiation, and position in the core. The only difference in treatment of the irradiated targets is that 

Target 1 was treated with 0.01 M HCl and Targets 2-5 were treated with 0.01 M HNO3. The target was 

removed from its sample holder and contacted with 5 mL of acid in a 15 mL plastic centrifuge tube for a 

total of 10 minutes. For 8 minutes, the centrifuge tube was placed on a table rocker (Figure 56) to evenly 

contact the solution with the material. For the remaining two minutes, the tube was centrifuged at 1500 

rpm in order to facilitate separation of the liquid from the solid. The solid and liquid were placed in 

separate 5 mL plastic scintillation vials (Figure 57). 
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Figure 56. Rocking table used to contact the solid targets with acid solutions. 

 

 

Figure 57. 5 mL plastic scintillation vials like these were used to hold the samples as they were counted. 

 

 Each vial was counted for 1 hour of live time on an HPGe or BEGe detector. The solid material was then 

returned to the plastic centrifuge tube and contacted with 6 mL of fresh acid. A 2 mL aliquot was removed 

after 30 minutes, 60 minutes, and 13 hours, respectively. Each of these aliquots was counted for 1 hour 

on the BEGe detector. 

Activities were calculated for each nuclide extracted and specific activities were compared within one 

sample; the activities cannot be compared between each target due to the differences in irradiation 
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conditions. Observed activity for a particular nuclide in Becquerel (decays/second) was calculated as 

shown in Equation 4. Observed counts were divided by the amount of live time that the sample was 

counted, in seconds. The relative detector efficiency is an inherent property of the detector, and is 34% 

for the BEGe BE3830 used in these experiments.86 The gamma yield describes what percentage of gammas 

released during a decay occur at a particular energy.  

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐵𝑞) =
(

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑠
𝑡𝑖𝑚𝑒(𝑠)

)

(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) ∗ (𝑔𝑎𝑚𝑚𝑎 𝑦𝑖𝑒𝑙𝑑)
 

Equation 4. Calculation of activity for an isotope in Becquerel 

3.5 Results 
 

3.5.1 Target 1 – UO2-2,6-pydc 

The target was treated as described previously using 0.01 M HCl; however, the solid completely dissolved 

overnight. This ease of dissolution may be due to radiation damage along the backbone of the polymer 

structure; an un-irradiated sample of UO2-2,6-pydc does not dissolve in 0.01 M HCl, even after 24 hours 

(Section 3.4).  This target may only be suitable for irradiation in an attenuated neutron flux (see Section 

3.5.2), or extraction with a milder solution, such as DI H2O.  

Because the target completely dissolved in the 0.01 M HCl solution over the course of the experiment, 

the results show a much greater extraction percentage than other targets. This result, while accurate, was 

not the goal of the project, and therefore shows that the material may be unsuitable for target reuse. 

Figure 58 shows the extraction percentages for selected fission products from the target. The majority of 

the products are extracted with yields greater than 80%. The value for 99mTc exceeds 100% because the 

99Mo present in the solution is decaying to 99mTc over the course of the experiment. By using Equation 5 

to calculate the time correction for the decay of 99Mo to 99mTc over the course of the experiment, the 

actual percent extraction for 99mTc is 86.3 %.  
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𝐴2 = 𝑁0

𝜆2𝜆1

𝜆2 − 𝜆1
(𝑒−𝜆1𝑡 − 𝑒−𝜆2𝑡)  

Equation 5. Calculation of the activity of a radioactive daughter nuclide after time t.  

Some isotopes, such as 93Y, have short half-lives– the half-life for 93Y is 10.2 hours,38 which is less time than 

the course of the experiment. Between counting the initial solid target material and counting the final 

extracted aliquot, approximately 15 hours had passed. During that time, slightly more than half of the 93Y 

had decayed, reducing the activity in the sample. However, this will have no effect on the percent 

extraction calculations, as the 93Y still present in the target material decays at the same rate as that found 

in the extracted aliquots. The same can be said for 91Sr and 97Zr, which have half-lives of 9.5 hours and 

16.75 hours, respectively.38 

 

Figure 58. Bar graph depicting the percent extraction of certain fission products from the first UO2-2,6-pydc target.  
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3.5.2 Target 2 – UO2-2,6-pydc 

Another UO2-2,6-pydc target was prepared and irradiated to determine if the material would dissolve in 

a different extractant post-irradiation. The aluminum foil was removed and the powdered material was 

treated as previously described using 0.01 M HNO3. After 13 hours, the yellow MOF material had not 

dissolved. The difference in dissolution between this sample and the previous UO2-2,6-pydc sample could 

be due to differences in the irradiation variables. For example, a decrease in the neutron flux could elicit 

less damage on the framework and reduce the possibility of dissolution. Assuming that the flux of 

neutrons decreases relative to the distance of the sample from the core, changes in the positioning of the 

sample between the two experiments could lead to less neutron exposure.  

Though the separation was done immediately following the irradiation, this sample was not counted using 

the BEGe until 10 days after the irradiation occurred.  Each sample (the solid, and four liquid aliquots, as 

explained at the end of Section 3.4) was counted for 3 hours on the BEGe detector. A background vial 

containing 0.01 M HNO3 was also counted for 3 hours. Unlike the UO2 salt targets, the UO2-2,6-pydc MOF 

target was only able to allow for extraction of certain isotopes, albeit in relatively good yields (Figure 59). 

There are several possible reasons for this result: because the samples were not counted until 10 days 

after the irradiation, some fission products will have decayed and will not appear to have been extracted 

from the MOF; the fission products could have been unable to escape from the framework due to size 

exclusion or embedding themselves too far into the framework to escape.   
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Figure 59. Bar chart depicting the percent extraction of certain fission products from the second UO2-2,6-pydc target material. 
Error bars are present. 

No other isotopes were seen in the extractant. It could be that these nuclides are the only ones that are 

able to escape from the framework, or that this target was not located in a position with high enough 

fluence to produce the same number of low-yield fission products seen in previous experiments. Due to 

the delay in gamma analysis, certain isotopes with short half-lives such as 135Xe (9 hours), and 149Pm (2 

days) had decayed sufficiently and were no longer present in the samples.38 This explains the lack of these 

isotopes in the data in Figure 59. The extraction percentage for 99mTc (t1/2 = 6 hours) is above 100% due to 

the ingrowth of the nuclide from the decay of 99Mo (t1/2 = 66 hours), which had undergone more than 3 

half-lives before the samples could be counted on the BEGe detector. The amount of 99Mo still remaining 

in the solid target sample post-separation represents only 44% of the 99Mo created during the irradiation. 

The liquid aliquots contain the other 56%, which will result in the formation of 56% more 99mTc over 10 

days in the liquid samples compared to the solid material. Thus it will appear that the separation of 99mTc 

resulted in a yield above 100%, when in actuality, the amount of 99mTc separated is 95.1%. For the solid 
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material, time is 327 hours post-separation, and the time for the liquid aliquots is 360 hours. By using 

Equation 5 to calculate the decay corrected 99mTc activity from the 99Mo parent activity in the aliquots, 

and taking into account the difference in counts of 99Mo material between the solid and liquid samples, 

the corrected percent yield of 99mTc is 95.1 %.  

Table 15 lists the counts originally in the target for a given nuclide. The low count numbers observed for 

these nuclides suggest that the target was placed in a relatively low neutron flux.  

Table 15. Counts in original target for nuclides extracted from the UO2-2,6-pydc MOF 

 

 

 

 

 

 

When compared with the isotopes extracted from the UO2 target without KBr using 0.01 M HNO3 (Table 

16), the UO2-2,6-pydc MOF allows for the extraction of fewer isotopes, but it has a more efficient 

extraction potential. The isotopes described in Table 16 were chosen in particular because of their 

presence in most of the MOF materials discussed in this chapter, and the UO2 target. The same isotopes 

are shown in comparison to the UO2 target for each MOF material in Sections 3.5.3 – 3.5.5. 

Table 16. Comparison of extraction percentages for selected isotopes from the UO2-2,6-pydc MOF to the UO2 target without 
KBr, both contacted with 0.01 M HNO3 for 13 hours. 

Nuclide % Extracted from MOF % Extracted from UO2 
143Ce 75.80 ± 3.43 20.59 ± 0.48 
239Np 87.57 ± 2.18 12.11 ± 0.52 
99Mo 56.68 ± 3.69 12.11 ± 0.52 
141Ce 64.50 ± 1.77 34.85 ± 0.69 

Nuclide Energy (keV) Gamma Yield Counts in Target 
143Ce 57.32 0.117 1128 
239Np 106.27 0.2534 13045 
99mTc 140.8 0.89 2154 
99Mo 181.32 0.0614 651 
132Te 228.64 0.88 3301 
141Ce 145.98 0.48 3400 
97Zr 355.72 0.021 1603 
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3.5.3 Target 3 – UO2-2,5-pydc 

The solid and all four liquid aliquots were counted on the BEGe detector for one hour each within 48 hours 

of the irradiation. At the end of the experiment, yellow powder remained. A comparison between this 

target and the UO2 microparticle target is shown in Table 18. With the exception of 141Ce, Target 3 extracts 

better than the UO2 target. Figure 60 shows the percent extractions for certain nuclides from the UO2-2,5-

pydc target. Based on the gamma spectra, no other nuclides appeared to have been extracted. Some 

nuclides, such as 140Ba – whose fission yield is roughly 6.0 %,87 were not extracted at all from this target. 

Barium has a relatively large ionic radius of 1.35 Å,88 and could potentially become trapped within the 

framework rather than escaping through the pores, which for this MOF are 9 x 6.5 Å.34 Barium also has an 

oxidation state of 2+, which could theoretically allow it to bind with the oxygen molecules of the carboxylic 

acid molecules within the framework. Other fission products have lower fission yields, such as 149Pm, 

whose yield is approximately 2%,87 and may not have been produced in high enough concentrations to be 

present in the gamma spectrum. For example, the calculated minimum detectable activity for 149Pm is 

2591.6 counts/hour (see Equation 6). If the amount of 149Pm in the sample is below that limit, the detector 

will not be able to detect it.  

𝑀𝐷𝐴 =
2.71 + 4.65√𝑁𝐵

𝜀𝑎𝛾𝑡
 

Equation 6. Calculating the minimum detectable activity for any given isotope. NB represents the background counts at a given 
energy, ε is the relative efficiency of the detector, aγ is the decay branching ratio for the given decay energy, and t is the time 
that the sample was counted.  

 The position of the target in the core could have been such that the flux was not high enough to produce 

the low-yielding fission products. The discrepancy in results between the two cerium isotopes, 141Ce and 

143Ce, may be due to the increase in specific activity of 143Ce. The half-life of 143Ce is significantly shorter 

than that of 141Ce – 1.377 days and 32.50 days respectively – which causes the specific activity of 143Ce to 
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be higher. Table 17 lists the number of counts in the original target material for the nuclides extracted 

from the UO2-2,5-pydc target. These values are higher than those listed in Table 15, indicating that this 

target was placed in a greater neutron flux than the UO2-2,6-pydc target. Nuclides with shorter half-lives, 

such as 239Np and 99Mo, have higher counts due to their increased activities.  

Table 17. Counts in original target for nuclides extracted from the UO2-2,5-pydc MOF 

Nuclide Energy (keV) Gamma Yield Counts in Target 
143Ce 57.32 0.117 10123 
239Np 106.27 0.2534 119400 
99mTc 140.8 0.89 26884 
99Mo 181.32 0.0614 5040 
132Te 228.64 0.88 31129 
135Xe 250.2 0.90 25972 

 

Table 18. Comparison of extraction percentages for certain isotopes from the UO2-(2,5-pydc)MOF to the UO2 target without 
KBr, both contacted with 0.01 M HNO3 for 13 hours. 

Nuclide % Extracted from MOF % Extracted from UO2 
143Ce 35.15 ± 0.69 20.59 ± 0.48 
239Np 40.57 ± 0.22 12.11 ± 0.52 
99Mo 32.82 ± 0.93 12.11 ± 0.52 
141Ce 0.00 ± 0.00 34.85 ± 0.69 
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Figure 60. Bar graph showing the percent extraction of certain fission products from the UO2-2.5-pydc target material.  

 

 

3.5.4 Target 4 – UO2-2,4-pydc 

The solid target material, and all four liquid aliquots were counted on the BEGe detector within 48 hours 

of the irradiation. The target had been reduced to a fine powder during irradiation, shipping, and handling, 
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but it did not dissolve in the 0.01 M HNO3 contact solution. 

 

Figure 61 depicts the nuclides extracted from the target, as well as their yields. The framework of this 

MOF does not appear to allow for easy extraction of many nuclides, which may be due to its tighter 

structure and smaller pore size than that of the previous pydc MOFs (6 Å compared to 9 x 6.5 or 8 Å).  
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Figure 61. Bar graph showing the percent extraction of certain fission products from the UO2-2.4-pydc target material. Error 
bars are present but may be too small to observe. 

Table 19 lists the counts observed in the original target material for the nuclides extracted. Nuclides with 

moderately short half-lives, defined between 12 and 72 hours, have higher count rates; examples include 

239Np and 99Mo. These data were obtained 25–36 hours after irradiation, which reduces the amount of 

short-lived (t1/2< 12 hours) nuclides.  

Table 19. Counts in original target for nuclides extracted from the UO2-2,4-pydc MOF 

 

Nuclide Energy (keV) Gamma Yield Counts in Target 
239Np 106.27 0.2534 162772 
99mTc 140.8 0.89 34161 
99Mo 181.32 0.0614 8013 
132Te 228.64 0.88 39022 
135Xe 250.2 0.90 32611 

131I 364.64 0.815 8147 

 

When compared to UO2 target material (Chapter 2 Section 2.5.3.6), cerium is extracted at a lower yield in 

the MOF. This framework has the smallest pore size of all the MOFs irradiated, which may affect the 
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extraction potential of the material. Certain fission products, such as 97Zr, may be able to interact 

chemically with the framework rather than being extracted from it. As the pores decrease in size from 8 

to 6 Å, this interaction is more likely.  

Table 20. Comparison of extraction percentages for certain isotopes from the UO2-(2,4-pydc)MOF to the UO2 target without 
KBr, both contacted with 0.01 M HNO3 for 13 hours. 

Nuclide % Extracted from MOF % Extracted from UO2 
143Ce 7.04 ± 0.20 20.59 ± 0.48 
239Np 21.68 ± 0.13 12.11 ± 0.52 
99Mo 14.70 ± 0.46 12.11 ± 0.52 
141Ce 0.00 ± 0.00 34.85 ± 0.69 

 

3.5.5 Target 5 – UO2-prma 

The solid material and all four liquid aliquots were counted on the BEGe detector within 48 hours of 

irradiation. Though the target material turned pale-yellow in the solution of 0.01 M HNO3, it did not 

dissolve. 

Figure 62 shows the percent extraction of nuclides from the pyromellitic acid target.  No other gamma-

active nuclides were extracted from this target, although 97Zr was present in the solid material. Table 21 

lists the counts observed in the original target material for each nuclide extracted. The counts extracted 
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from the UO2-prma target are significantly higher than for any other UO2-MOF target. This is most likely a 

reflection of where the target was placed during the irradiation. This target was probably located within 

a higher neutron flux than previous target materials; more fission events occurred and more fission 

products were created.  

Table 21.  Counts in the original target for nuclides extracted from the UO2-prma MOF 

Nuclide Energy (keV) Gamma Yield Counts in Target 
239Np 106.27 0.2534 203298 
99mTc 140.8 0.89 40746 
99Mo 181.32 0.0614 7532 
132Te 228.64 0.88 50277 
135Xe 250.2 0.90 7677 

149Pm 285.7 0.872 10204 
140Ba 537.74 0.24 2087 

 

The extraction yields for this target were not high, but the majority were above 50%. Neither cerium 

isotope was extracted from this material, which could be related to size exclusion or chemical interactions 

within the framework. Cerium can adopt a 4+ oxidation state, and could therefore chemically interact 

with the framework after it was produced. This possibility may, in part, explain why no cerium was 

extracted from the UO2-prma target. It may also explain the lack of 97Zr extraction. Though 239Np could 

conceivably replace 238U in the framework, as the ionic radius of 239Np is reasonably similar to 238U (0.87 

and 0.89 Å, respectively),88  neptunium can adopt many oxidation states, the most likely of which under 

atmospheric conditions is the 5+ oxidation state.14 The 239Np(V) isotope will be less likely to coordinate to 

the framework than atoms in 4+ or 6+ oxidation states. Molybdenum, which is most often in the 6+ 

oxidation state, has a much smaller ionic radius than other 6+ ions (0.65 Å, compared to 0.72 Å for 

zirconium or 0.87 Å for cerium),88 and could be less likely to interact with the framework.  
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Figure 62. Bar chart describing the percent extraction of certain fission products from the UO2-prma target. Error bars are present 
but may be too small to observe. 

Table 22 describes the extraction of certain nuclides from Target 5 versus the UO2 target from Chapter 2. 

Though no cerium was extracted from Target 5, more 239Np and 99Mo were extracted compared to the 

UO2 target. 

Table 22. Comparison of extraction percentages for certain isotopes from the UO2-(prma)MOF to the UO2 target without KBr, 
both contacted with 0.01 M HNO3 for 13 hours. 

Nuclide % Extracted from MOF % Extracted from UO2 
143Ce 0.00 ± 0.00 20.59 ± 0.48 
239Np 54.80 ± 0.20 12.11 ± 0.52 
99Mo 62.45 ± 1.16 12.11 ± 0.52 
141Ce 0.00 ± 0.00 34.85 ± 0.69 

 

3.6 Comparison of MOF targets 
 

Because Targets 2-5 were treated with 0.01 M HNO3, their results can be compared. Due to differences in 

irradiation parameters, such as fluence, duration, and position of the target in the core, the results will be 

discussed in terms of percent of each fission product extracted from the solid target. This method was 
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explained in more detail in Chapter 2 Section 2.4. Table 23 lists each nuclide extracted from the UO2-

MOFs, its gamma ray yield and energy, and the raw counts extracted. Certain gamma signatures are low 

yielding, such as the one from 143Ce. Lower yielding gamma rays will produce fewer counts in a detector, 

and therefore fewer counts will appear to have been extracted from the target. For example, 239Np and 

99Mo have half-lives on the same order of magnitude, but 239Np has a higher gamma yield (25.34 %) than 

99Mo (6.14 %). There are far more counts extracted for 239Np than for 99Mo. Though there are many 

explanations for this data, the higher gamma yield may contribute to the difference in number of counts 

extracted. Nuclides that have shorter half-lives, such as 99mTc or 135Xe, will have higher specific activities, 

and more counts seen by the detector. The data in Table 23 for 99mTc generally shows a higher count rate 

than longer lived nuclides with comparative gamma yields, such as 132Te.   

Table 23.  Raw counts of nuclides extracted from each UO2-MOF 

Nuclide 
Gamma 

Yield (%)89 

Gamma 
energy 
(keV)89  

T1/2 
(hours)38 

Counts 
from UO2-
2,6-pydc 

Counts 
from UO2-
2,5-pydc 

Counts 
from UO2-
2,4-pydc 

Counts 
from UO2-

prma 

143Ce 11.70 57.32 33.05 855 ± 29.2 
3558 ± 

59.6 
0.00 ± 0.00 0.00 ± 0.00 

239Np 25.34 106.27 56.54 
11424 ± 

106.9 
48441 ± 

220.1 
35290 ± 

187.9 
111406 ± 

333.8 

99mTc 89.00 140.80 6 
4471 ± 

66.7 
12072 ± 

109.9 
8670 ± 

93.1 
32125 ± 

179.2 

99Mo 6.140 181.32 66 369 ± 19.2 
1654 ± 

40.7 
1678 ± 

41.0 
4704 ± 

68.6 

132Te 88.00 228.64 76.8 
2801 ± 

52.9 
13531 ± 

116.3 
4254 ± 

65.2 
32300 ± 

179.7 

141Ce 48.00 145.98 780 
2193 ± 

46.8 
0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

135Xe 90.00 250.20 9.10 0.00 ± 0.00 
4372 ± 

66.1 
2099 ± 

45.8 
4371 ± 

66.1 

149Pm 87.20 285.70 53.1 0.00 ± 0.00 0.00 ± 0.00 
1240 ± 

35.2 
6273 ± 

79.2 

97Zr 2.09 355.72 16.75 
1219 ± 

34.9 
0.00 ± 0.00 438 ± 20.9 0.00 ± 0.00 

140Ba 24.00 537.74 306 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 991 ± 31.5 
131I 81.50 364.64 192.6 0.00 ± 0.00 0.00 ± 0.00 283 ± 16.8 0.00 ± 0.00 
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Figure 63. Comparison of the extraction percentages of fission products between the three MOF targets. 

Several conclusions can be drawn from the data shown in Figure 63. Though few fission products were 

able to be analyzed for UO2-2,6-pydc target, all of them were extracted in high yields. Several more fission 

products were extracted from the UO2-2,5-pydc target, but in much lower yields; this could be due to a 

change in the pore size from 8 Å to 9 x 6.5 Å, causing retention of more fission products.  The MOF with 

the lowest extraction yield, UO2-2,4-pydc, also had the smallest pore size of 6 Å.  The size of the pore 

decreases and becomes less symmetrical as the carboxylic acids move positions on the pyridine ring, 

which could explain the distinct difference in results between the three pydc targets. The final result was 

from a completely different framework; the most fission products were extracted in relatively good yields 

from the UO2-prma target. The pore size of the prma target (8 Å) was not larger than the pydc targets (6.8 

– 8 Å), though the pore shape and framework structure are completely different. This could indicate that 

the porous frameworks formed by the pyridinedicarboxylic acid molecules are not ideal for removing 

fission products well, but the framework shape of the UO2-prma target it appears to allow for better 
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separation.  

Many fission products have low production yields from the fission process, and may have concentrations 

too low to be detected in a gamma spectrum, as exemplified by 140Ba and 141Ce. The targets were likely 

not placed in the same location during their respective runs, which may change the neutron flux on the 

target, and therefore impact the extraction data. It is also possible that fission products that can adopt a 

4+ or 6+ oxidation state, such as 143Ce, 97Zr, 99Mo, 99mTc, or 132Te, could have fit chemically into the 

framework instead of being extracted. The structure of each framework was slightly different, and it could 

be possible that the fission products fit better within one framework type than the others. For example, 

97Zr was only extracted from the UO2-2,6-pydc framework. Its predilection for adopting a 4+ oxidation 

state could allow it to bind within the tighter frameworks of the other MOFs. Discrepancies in the data 

can also be due to differences in specific activities and gamma yields between nuclides. A nuclide with a 

shorter half-life will have a higher specific activity, and more counts, than a longer-lived nuclide.  

These data show that it is possible to extract fission products from a porous framework without 

completely dissolving it. The size and structure of the framework seems to have an effect on the type of 

fission products that are easily extracted. This result shows that frameworks like these could be used to 

selectively extract specific fission products efficiently.  
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Chapter 4: Irradiations of Other Materials  
 

Metal organic frameworks (MOFs) are not the only porous structures that could show potential use as an 

irradiation target. Sol-gels, inorganic polymers transformed from a solution to a network structure,90 are 

other examples of potentially porous, organic-based frameworks. Generally, these porous structures are 

formed from the hydrolysis of metal-alkoxides, forming cross-linking polymers. The formation of pores 

can be achieved using supercritical drying of the sample.90 Ideally, if an irradiation target were formed 

from a sol-gel, the pores in the framework would allow for the escape of fission products in the same 

manner as the MOF targets. The gels may prove to be safer to work with than MOFs because they are a 

non-dispersible material. The gel could also act as a secondary matrix, much like the KBr salt discussed in 

Chapter 2, and increase the extraction of fission products simply by trapping the escaped fission products 

and dissolving in a solution. This could be advantageous because the polymer would not be activated in 

the neutron flux and form radioactive products that would interfere with the data in the gamma spectra.  

4.1 Introduction 
The majority of materials described in this work are synthesized in water, which can have negative effects 

on the neutron energy during the irradiation. Water contains two hydrogen atoms (protons) and one 

oxygen atom. The protons are each roughly the same size as the neutron, which leads to maximum energy 

transfer from the neutron if it interacts with a proton.40 This process moderates the neutrons, reducing 

both their energy and the likelihood they will induce fission in a 238U atom.40  Removal of the water is 

necessary to prevent moderation of the neutrons; however, elimination of any solvent present in the 

channels of a framework by conventional drying techniques will cause the structure to collapse. Critical 

point drying of the sample allows water to be removed while leaving the structure intact.91 The critical 

point of any material is the temperature and pressure at which the liquid and gaseous phases have the 

same physical characteristics.91 Table 24 describes the critical point data for both H2O and liquid carbon 
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dioxide (CO2). Since the critical point of water cannot be feasibly reached in a laboratory setting CO2 is 

used.  

Table 24. The temperature and pressure at the critical point for different solvents.91 

 Critical Point Temperature (°C) Critical Point Pressure (psi) 

H2O 374 3322 

CO2 31 1073 

 

However, CO2 is not miscible with water. The water must be exchanged with another solvent, such as 

acetone or ethanol, in a pre-critical point drying step.91 This chapter includes two other target materials 

that were not MOFs; however, all targets described in this chapter were synthesized using depleted 

uranium. The first target was a thin-sheet polymer made from the gelation of alginic acid with UO2 

microparticles suspended within the polymer. The second target material was made from a uranyl-oxalic 

acid framework and did not need to be dried prior to irradiation.  

4.1.1 Critical Point Drying 
Once a sample has been correctly prepared by exchanging water with another solvent, it can be dried. 

Figure 64 shows images of the dryer being assembled. The samples are placed in one of the six chambers 

of the mesh basket and the basket is placed in the pressure chamber. The chamber is sealed and filed with 

CO2 from a gas cylinder until the meniscus is at the correct level, between the two red lines shown in 

Figure 64d. The temperature is increased to 36 °C, just above the critical point temperature, and the 

chamber is pressurized to approximately 1300 psi. In general, the chamber is held at these conditions for 

5-10 minutes while the supercritical CO2 is stirred through the mesh basket to fully exchange with the 

solvent.92 The pressure and temperature are slowly brought back to ambient conditions to allow the CO2 

to escape the sample as a gas.  This process is often repeated several times; in the case of these 

experiments, each sample was contacted with supercritical CO2 three times for 5 minutes each.   
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Figure 64. This series of images shows a sample being prepared for critical point drying. A) The basket that holds up to six samples. 
B) The three parts of the basket compared to a pen cap. C) The fully assembled basket. D) The chamber where the basket sits 
during the drying. The window shows the level of the CO2 in the chamber – the meniscus should be between the two red lines in 
order for the process to work. E) The benchtop critical point dryer. The chamber is located on the top left of the instrument. 

The thin sheets of UO2-alginate polymer were soaked in acetone for one week in order to exchange any 

water in the material prior to critical point drying. The acetone-soaked samples were placed in the 

benchtop critical point dryer, and the temperature and pressure in the sample chamber were increased 

to 36 °C and 1300 psi. The acetone in the samples was exchanged with liquid CO2. As the temperature and 

pressure were brought back to atmospheric conditions over 10 minutes, the CO2 became gaseous and 

evaporated from the gel, leaving behind pores.  

 

a b c 

d e 
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4.2 Target Materials 

4.2.1 Alginate Gel 
Sodium-alginate was chosen as the metal-alkoxide for the Sol-gel because the mechanism of the gelation 

process is well understood,93 the material is nontoxic, and the gelation is easy to produce.94 Figure 65 

shows the polymeric structure of the sodium salt of alginic acid.94 Alginate was originally found in several 

varieties of seaweed, particularly those that grow in cold waters.95 Major commercial sources of the 

compound are located off the coasts of California, Scotland, and Norway.95 The chain is generally a co-

polymer of L-guluronic acid and β-D-mannuronic acid, although the type of seaweed and growing 

conditions will affect the ratio of acids as well as the structure of the chains.95 This structure can affect the 

gelation properties of the polymer; for example, guluronic acid binds calcium more efficiently, so a 

polymer with a higher guluronic acid concentration will form more rigid gels.95 

 

Figure 65. Chemical structure of sodium alginate polymer.94 

The alginate target was created by suspending UO2 microparticles (see Chapter 2) within the solution prior 

to gelation. The goal was to mimic the KBr:UO2 targets described in Chapter 2 using the same UO2 

particles, but adding alginate polymer rather than KBr as the secondary matrix. The suspension of 

microparticle UO2 in the gel was relatively simple; the UO2 particles were suspended in DI H2O by rapidly 

stirring the solution before the addition of alginic acid. The gel formed quickly, trapping and suspending 

the UO2 particles in the clear gel (Figure 66). 
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Figure 66. UO2 particles suspended in an alginate gel 

The gel was allowed to dry in air for several days until it became a thin layer approximately 0.16 mm thick. 

This clear sheet of polymer no longer has the same characteristics of the original gel. The material is no 

longer tacky and gelatinous, but has become a thin, flexible sheet of polymer.  

 Part of the thin sheet was placed in 0.01 M HCl in order to examine its behavior in this solution. Within 

an hour the gel had dissolved in the acid, leaving behind the small UO2 particles. This indicates that the 

fission products from the irradiated target would be easily separable from the UO2 particles, much like 

the KBr matrix described in Chapter 2. Prior to irradiation, the polymer material was critically point dried 

using CO2 and the techniques described above. This process was carried out to remove any residual 

solvent, and increase the porosity of the gel. The change in structure of the material due to the formation 

of pores and bubbles from the critical point drying process may allow for easier dissolution of the polymer 

post-irradiation.  

Although it was not crucial to the irradiation experiments, the dispersion of the particles within the gel 

matrix was explored via autoradiography. Three gels with approximately 50 mg of UO2 particles each were 

prepared by the method described above (Figure 67). As the intensity of the radiation in the sample 
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changes, so does the color in the image. The bottom image of Figure 67 shows the audioradiograph of the 

alginate samples (as compared to the sample on the left). Red indicates a higher concentration of 

radioactive material, yellow is indicative of moderate concentration, and blue indicates a lower 

concentration.  Clearly the UO2 particles are not evenly distributed throughout the sample, but for the 

purposes of this research, the homogeneity of the sample is not imperative because the entire sample 

will be in the neutron flux.  

 

 

Figure 67. The three UO2-alginate gels and their autoradiography results (bottom). 

 

4.2.2 Irradiation 
Approximately 20 mg of UO2 microparticles were suspended in alginate gel, critically point dried to 

remove solvent and increase porosity of the material, and irradiated with fast neutrons. The thin sheets 

of the gel were cut to fit within the sample holder (approximately 1 cm2), stacked four sheets high, 

wrapped in aluminum foil, and placed in the sample holder. The sample was irradiated in Flattop but the 

organic material sublimed and caused loss of the target. Unfortunately, it appears that the temperature 
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in the core of Flattop is high enough that the alginate gel decomposed and built up pressure within the 

sample holder. Temperatures in the core of Flattop can reach in excess of 220°C.96 It was later determined 

that under laboratory conditions the alginate gel decomposes at approximately 180 °C, and so is better 

suited for the environment present in a research reactor. Research reactors are much smaller than typical 

power reactors: 100 megawatts (MW) and 3000 MW, respectively.97 Because they are smaller and put out 

less power, research reactors run at lower temperatures than typical power reactors.97 For example, the 

University of Missouri Research Reactor operates at 136 °C, significantly lower than the sublimation point 

of the alginate target.98 Recent studies from the Korean Atomic Energy Research Institute have also shown 

that it is possible to irradiate materials in a research reactor below 100 °C.99  

4.3 Oxalic Acid 
Oxalic acid (Figure 68) has historically been used in uranium synthesis, including the formation of UO2 

fuel,100  formation of clusters,101 and frameworks.102 It is most commonly used in precipitation of uranium 

during fuel production. The precipitation can form either uranium (IV) oxalate or uranyl oxalate;103 this 

process is often studied by the nuclear forensics community for its effect on surface formation of the final 

UO2 fuel.100  The target discussed herein is uranium (VI) oxalate, which has a different chemical structure 

owing to the addition of two oxygen atoms to the uranium center. Though not technically a MOF, the 

UO2-oxalate polymer forms stacks of 1-dimensional sheets that interact via Van der Waals interactions. 

The resulting framework includes channels between the polymer sheets, which could be advantageous 

for extracting fission products.  
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Figure 68. Oxalic acid linker molecule 

4.3.1 Experimental 
The UO2-oxalate structure was synthesized hydrothermally via a reaction of UO2(NO3)2·6H2O (0.0978 mg, 

0.1948 mmol), adipic acid (0.0301 g, 0.2060 mmol), and oxalic acid (0.0302 mg, 0.2395 mmol, 2 equiv.) in 

2 mL of water at 180 °C for 18 hours. After cooling to room temperature over 4 hours, the yellow liquid 

was transferred to a scintillation vial and cooled to 4 °C. Small yellow crystals grew overnight and were 

shown by SCXRD analysis to be identical to the structure for (UO2)2C2O4(OH)2(H2O)2, published by Giesting, 

et. al. in 2005.104 The structure contains chains of uranyl moieties bound to oxalate groups, which are then 

linked together into layers by hydrogen bonding.104 Though it is not a porous framework, there are 

channels that run between the chains.  

The yellow crystalline material (25.4 mg) was pressed into a 6 mm pellet using 2 tons of force for 10 

minutes. The resulting pellet was wrapped in aluminum foil and sealed in an aluminum sample holder 

identical to those used for previous samples (Figure 69). Upon return from irradiation, the target was 

contacted with 0.01 M HNO3 following the standard procedure. 
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Figure 69. Image of UO2-oxalate target prior to irradiation. 

4.3.2 Results 
The target did not remain intact through the irradiation process. The initial yellow pellet became a black 

powder - likely losing oxalate ligands and reducing to UO2 within the environment of Flattop. Typically the 

decomposition of the oxalate species occurs between 300 and 400 °C in vacuum,100 but it is possible that 

the neutron bombardment on the framework facilitated the decomposition. The oxalate ligand is not 

particularly complex, and the sheets of the polymer are held together via Van der Waals interactions 

rather than by stronger bonds. The bombardment of neutrons against the simple framework may cause 

destruction of the ligands or the MOF-like porosity. In the reducing atmosphere within Flattop, the uranyl 

cation could be reduced to UO2. The solid material and four liquid aliquots were counted on the BEGe 

detector within 36 hours of irradiation. Figure 70 shows the percent extraction of fission products from 

the target material when contacted with 0.01 M HNO3. The full treatment details and explanation can be 

found in Chapter 3 Section 3.4. 

The size of the UO2 particles formed from the oxalate target were not measured due to their activity, but 

literature reports site diameters of irradiated UO2 particles as ranging from 20 µm to 2 mm;105 significantly 

greater than the diameter of particles described in Chapter 2 (2.66 µm, on average). The data from the 

UO2-oxalate target (Figure 70) shows that fission products can be extracted from the target diameter UO2 
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particles, although the yields were not high. The low yield may be due to a lack of secondary matrix onto 

which the products can embed (such as KBr), or due to the larger size of the particles. If the fission event 

occurs within a particle whose diameter is greater than 10 µm, the products from that event may not 

escape the particle. The extraction of certain products, such as 99mTc and 99Mo, is promising; with 

optimization of the target, these results could lead to a better target material for the production of these 

and other medical isotopes. The only fission products that were extracted from this target material are 

those centered around the humps on the fission curve (Chapter 1 Section 1.6). This is not particularly 

surprising, as the fission products at the top of the humps have the highest fission yield due to their 

enhanced stability in the nucleus. However, these results indicate that this target was exposed to a low 

neutron flux. The activity calculated for each isotope extracted is listed in Table 25; calculations were done 

according to Equation 4 (see Section 3.4).  

 

Figure 70. Bar graph depicting the percent extraction of fission products from the UO2-oxalate MOF target. Error bars are present, 
but may be too small to see.  
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Table 25. Counts in the original target for each nuclide extracted from the UO2-oxalate target. 

Nuclide Energy (keV) Gamma Yield Counts in Target 
143Ce 57.32 0.117 14003 
99mTc 140.8 0.89 28690 
99Mo 181.32 0.0614 6079 
132Te 228.64 0.88 35761 
135Xe 250.2 0.90 22495 

 

Table 25 lists the counts observed in the target material for the fission products extracted from the target. 

These values are reasonably similar to the targets described in Chapter 3; indicating that this target was 

located in a similar neutron flux environment as the UO2-2,5-pydc MOF target, but in a lower flux than the 

UO2-2,4-pydc target. Only those fission products with high fission yield were present, which is likely 

related to the neutron flux. The isotopes whose half-lives are on the order of days, 143Ce and 99Mo, have 

the highest activity present. Because of its 9.1 hour half-life, 135Xe had significantly decayed before the 

completion of the experiment.  

The material did not remain in a polymer configuration, and thus a direct comparison cannot be drawn 

between the extraction yield data and the extraction yields from the MOFs described in Chapter 3. 

However, a general comparison between this target and the microparticle UO2 target that did not contain 

KBr (see Chapter 2 Section 2.5.3.6) can be made because both products are UO2 particles of different size, 

and both were contacted with 0.01 M HNO3. The comparison shows the extraction potential of the target 

can be correlated to the size of the UO2 particles. For the purposes of this discussion, the particles 

synthesized as part of the earlier chapters of this thesis work are referred to as microparticles because 

they are less than 10 µm in diameter, and the particles formed from the UO2-oxalate target irradiation are 

referred to as macroparticles. In this comparison, the microparticle UO2 target showed significantly more 

fission products extracted at higher percentages than the target with macroparticle UO2. Figure 71 depicts 

this difference; the microparticles are shown as red bars, and the oxalate macroparticles are shown as 
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blue bars. In most cases, the microparticulate UO2 particles allow for better extraction of more fission 

products compared to the particles produced in the irradiation of the oxalate framework. The UO2 target 

samples were not counted on a BEGe detector until 10 days after the irradiation, which limited the 

number of short-lived fission products still present in the sample, and the oxalate target samples were 

counted within 36 hours of irradiation. The oxalate target therefore shows extraction of more short-lived 

fission products, such as 99mTc and 135Xe.  However, even with the discrepancy in time between irradiation 

and measurement, the data still shows that the smaller particles have a higher extraction potential in 0.01 

M HNO3 than larger particles.  

 

Figure 71. Comparison of extraction of fission products between two UO2 particle sizes. Error bars are present, but may be too 
small to see. 

Based on this limited amount of data, it appears that the smaller UO2 particles do allow for a better 

extraction of fission products, even without the presence of a secondary matrix. Experiments using UO2 

particles with known diameters should be done to fully understand the difference in extraction potential 

of microparticles compared to macroparticles. The experiment with the UO2 microparticles should also be 
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repeated and counted within 36 hours to obtain data for a better comparison, since some of the short-

lived isotopes like 135Xe aren’t represented in the current data.  

The use of organic-based polymers as a secondary matrix for a target may not be the best course of action 

due to the temperature and environment in Flattop. The high temperature within the core can cause the 

polymer to degrade, which increases the pressure within the sample holder. If the polymer degrades, the 

target could lose its secondary matrix. This is one disadvantage that the UO2:KBr targets do not have. It 

may be beneficial to move the target father from the core to reduce the localized heat, or to increase the 

enrichment of the uranium particles and irradiate the material in a cooler environment, such as a research 

reactor.  
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Chapter 5: Organoactinide Synthesis – Chalcogenides  

5.1 Background 
The following three chapters describe synthetic efforts in organometallic actinide chemistry. Details of 

each project will be explained in an introduction section at the beginning of each chapter. Unless 

otherwise noted, all reactions and manipulations were performed at 25 °C in a recirculating Vacuum 

Atmospheres NEXUS model inert atmosphere (N2) drybox equipped with a 40CFM Dual Purifier NI-Train. 

Glassware was dried overnight at 150 °C before use. All NMR spectra were obtained using a Bruker Avance 

400 MHz spectrometer. Chemical shifts for 1H NMR spectra were referenced to solvent impurities (δ = 

7.16 for benzene-d6, 3.58 for THF-d8). Unless otherwise noted, reagents were purchased from commercial 

suppliers and were used without further purification. Benzene-d6 and THF-d8 (Cambridge Isotope 

Laboratories) were purified by storage over activated 4 Å molecular sieves for at least 48 hours prior to 

use. Celite and 4 Å molecular sieves (Aldrich) were dried under dynamic vacuum at 250 °C for 48 hours 

before use. All solvents (Aldrich) were purchased anhydrous and were dried over sodium for at least 24 

hours, passed through a column of activated alumina, and were stored over activated 4 Å molecular sieves 

prior to use. Melting points were measured with a Barnstead Thermolyne MEL-TEMP capillary melting 

point apparatus using capillary tubes flame-sealed under vacuum; values are uncorrected. Elemental 

analyses were performed by Atlantic Microlab, Inc., in Norcross, GA. Several other characterization 

techniques were utilized in the course of these projects, including NMR, UV-Vis-NIR, and IR 

spectroscopies, electrochemistry, and X-Ray diffraction. These techniques are described in Chapter 1. The 

history and general chemistry of thorium and uranium are explained in Chapter 1, Section 1.3.1.  



 

111 
 

5.2 Actinide chalcogenide studies 

5.2.1 Introduction 

Actinide compounds are often studied for their unique chemical and structural properties which are made 

possible by the presence of the 5f electrons.106-108 Actinide-chalcogenide systems have been previously 

studied to better understand the hypothesis that separation of the actinides and lanthanides from spent 

fuel, or from each other, could be facilitated by using soft-donor ligands (e.g. N, S).107,109-111 The actinides 

have a greater tendency than the lanthanides to form covalent bonds with soft-donors, including sulfides, 

due to the radial extension of the 5f orbitals.110,112 It is important to understand the fundamental 

structural, electronic, and bonding properties of actinide-chalcogenide compounds in order to learn to 

what extent the 5f-electrons impact the coordination chemistry of the actinides. There is also interest in 

how chalcogenide ligands bind with thorium,113 which has no 5f-electrons. A comparison of how 

chalcogenides interact with thorium versus uranium may enhance actinide separations, including the 

target-based separations described in previous chapters. Recent publications show a growing interest in 

the reactivity of thorium with sulfur based ligands. Hayton in particular has studied the reactivity of 

thorium trisulfides,114 and thorium-sulfide multiple bonds.115 There are several examples in the literature 

of recent thorium-sulfide compounds,108,111,113,114,116-121 including Evans and coworker’s reaction of 

[(C5Me5)2ThH2]2 with PhSSPh to give (C5Me5)2Th(SPh)2 (1),111 and the bridging sulfide complex [[η5-1,3-

(Me3C)2C5H3]2Th](μ-S)2 (2) published by Ren et.al. from the reaction of  [η5-1,3-(Me3C)2C5H3]2Th(bipy) with 

CS2.118 There are far fewer illustrations of sulfide insertion into thorium-X bonds (X = C,122-124 N125); for 

example, Walter and coworkers published the insertion of PhNCS into (C5Me5)2Th(η4-C4Ph2) to give 

(C5Me5)2Th[SC(=NPh)(C4Ph2)] (3).123Sattelberger published the original synthesis and the structural 

characterization of (C5Me5)2ThS5 (4) in 1986,113 and it was recently reported by the Kiplinger group that 4 

can be prepared using an actinide hydride route.15  
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5.3 Thorium 

5.3.1 Experimental 

The compounds (C5Me5)2ThCl2 (5),126
 (C5Me5)2ThMe2 (6),127 (C5Me5)2ThPh2 (7),128 (C5Me5)2Th(SPh)2 (1),17 

and K2S5 (8)129 were prepared according to literature reports. NMR data can be found in Appendix B: NMR 

Data. Crystal structures for all the following compounds are described in Section 5.3.3. 

Synthesis of (C5Me5)2ThS5 (4): 

Route a: From (C5Me5)2ThCl2. A 20 mL scintillation vial equipped with a stir bar was charged with 

(C5Me5)2ThCl2 (5, 100.5 mg, 0.1748 mmol), K2S5 (8, 38.1 mg, 0.1728 mmol) and THF (2 mL). The reaction 

was stirred at ambient temperature for 18 h. The solvent was removed under reduced pressure and the 

product was extracted with toluene (5 mL), followed by filtration through Celite. The filtrate was collected 

and volatiles removed under reduced pressure to give 4 as a yellow-orange solid (106.3 mg, 0.1604 mmol, 

92%). X-ray quality crystals were obtained by crystallization from a saturated toluene solution layered 

with hexane at –35 °C. The 1H NMR spectrum and X-ray crystal structure data are in agreement with 

literature data for the compound.113 1H NMR (C6D6, 298 K): δ 2.04 (s, 30H, C5Me5). 

Route b: From (C5Me5)2ThMe2. A 20 mL scintillation vial equipped with a stir bar was charged with 

(C5Me5)2ThMe2 (6, 100.8 mg, 0.1893 mmol), S8 (48.9 mg, 0.1906 mmol), and toluene (4 mL). The reaction 

was stirred at 70 °C for 18 h and filtered through Celite. The filtrate was collected and volatiles removed 

under reduced pressure to give 4 as a yellow solid (115.3 mg, 0.1739 mmol, 92%). X-ray quality crystals 

were obtained by crystallization from a saturated toluene solution layered with hexane at –35 °C. The 1H 

NMR spectrum and X-ray crystal structure data are in agreement with literature data for the compound.  

Route c: From (C5Me5)2ThPh2. A 20 mL scintillation vial equipped with a stir bar was charged with 

(C5Me5)2ThPh2 (7, 145.8 mg, 0.222 mmol), S8 (57.0 mg, 0.222 mmol) and toluene (5 mL). The reaction was 

stirred at 70 °C for 6 h and the solvent removed under reduced pressure. The crude product was triturated 
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with (Me3Si)2O (10 mL) and the solution passed through a Celite plug. The filtrate was discarded and the 

insoluble solid was redissolved in toluene (5 mL), passed through Celite and the volatiles removed under 

reduced pressure to give 4 as a yellow solid (98.7 mg, 0.149 mmol, 67%). The 1H NMR spectrum is in 

agreement with literature data for the compound.  

Route d: From (C5Me5)2Th(SMe)2. A 20 mL scintillation vial equipped with a stir bar was charged with 

(C5Me5)2Th(SMe)2 (9, 101.4 mg, 0.1695 mmol), S8 (43.1 mg, 0.1680 mmol) and toluene (4 mL). The reaction 

was stirred at 70 °C for 18 h and filtered through Celite. The filtrate was collected and volatiles removed 

under reduced pressure to give 4 as a yellow solid (109.8 mg, 0.1695 mmol, 98%). X-ray quality crystals of 

4 were obtained by crystallization from a saturated toluene solution layered with hexane at –35 °C. The 

1H NMR spectrum and X-ray crystal structure are in agreement with literature data for the compound.  

Route e: From (C5Me5)2Th(SPh)2. A 20 mL scintillation vial equipped with a stir bar was charged with 

(C5Me5)2Th(SPh)2 (1, 100.0 mg, 0.139 mmol), S8 (35.6 mg, 0.139 mmol) and toluene (5 mL). The reaction 

was stirred at 70 °C for 6 h and the solvent removed under reduced pressure. The crude product was 

triturated with (Me3Si)2O (10 mL) and the solution passed through a Celite plug. The filtrate was discarded 

and the insoluble solid was redissolved in toluene (5 mL), passed through Celite, and the volatiles removed 

under reduced pressure to give 4 as a yellow solid (65.1 mg, 0.098 mmol, 71%). The 1H NMR spectrum is 

in agreement with literature data for the compound.  

Synthesis of (C5Me5)2Th(SMe)2 (9): A 20 mL scintillation vial equipped with a stir bar was charged with 

(C5Me5)2ThCl2 (5, 99.6 mg, 0.173 mmol, 1 equiv.), NaSCH3 (25.3 mg, 0.361 mmol, 2 equiv.) and THF (5 mL) 

and the reaction was stirred at room temperature for 18 h. The solvent was removed under reduced 

pressure and the product extracted with toluene (5 mL), followed by filtration through Celite. The filtrate 

was collected and volatiles removed under reduced pressure to give 9 as a microcrystalline beige powder 

(91.1 mg, 0.152 mmol, 88%). X-ray quality crystals of 9 were obtained by recrystallization from a saturated 
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toluene solution layered with hexane at –35 °C. 1H NMR (C6D6, 298 K): δ 2.11 (s, 30H, C5Me5), 2.51 (s, 6H, 

SCH3). 13C NMR (C6D6, 298 K): δ 11.52 (C5Me5), 12.06 (v1/2 = 7 Hz, S-Me), 126.43 (C5Me5). NIR (29.59 mM, 

toluene, 298 K, cm-1 (M-1cm-1): 5886 (1.76), 5760 (3.31), 4610 (5.58), 4390 (15.21), 4297 (16.56). m.p. 

242.1-244.0 °C. Anal. Calcd. for C22H36S2Th (mol. wt. 596.69): C, 44.28; H, 6.08. Found: C, 44.42; H, 6.11.   
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5.3.2 Results  

The original preparation of 4 was carried out by reaction of (C5Me5)2ThCl2 (5) with one equivalent of 

Li2S5..
113 The most similar reaction in this research is that of 5 with K2S5 to yield 4 in 92% yield (Equation 7).  

 

Equation 7. Synthesis of 4 using salt metathesis between (C5Me5)2ThCl2 and K2S5 

The 1H NMR spectroscopy (C6D6, δ = 2.04 ppm (s, 30H, C5Me5)) suggests that pure 4 was obtained. Single 

crystals of 4 suitable for X-ray diffractometry were obtained from toluene layered with hexane at –35 °C. 

Figure 72 shows the crystal structure of 4 from two different angles in order to draw attention to the η-4 

bonding nature of the S5 ring.  Scheme 2 describes the variety of other ways that 4 can be synthesized, 

including the reaction of 1, 6, 7, or 9 with elemental sulfur in toluene.  

 

Equation 8. Synthesis of 9 using salt metathesis 

Equation 8 shows the reaction of (C5Me5)2ThCl2 with NaSMe (2 equiv.) to form (C5Me5)2Th(SMe)2 (9). After 

recrystallization from toluene layered with hexane at –35 °C, large orange crystals of 5 (Figure 73) were 

obtained in 88% yield. The 1H NMR spectrum in C6D6 of 9 exhibits two singlets at 2.11 ppm and 2.50 ppm 
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corresponding to (C5Me5) and –SCH3 respectively. A similar compound, (C5Me5)2Th(SCH2CH2CH3)2, has a 

similar 1H NMR spectrum in C6D6. The C5Me5 peaks appear at 2.12 ppm, and the propyl protons appear at 

3.13, 1.78, and 1.06 ppm.114 The 13C NMR of 4 shows three peaks corresponding to the three distinct 

carbons in the complex (C5Me5 = 126.43 ppm, C5Me5 = 11.52 ppm; –SMe = 12.06 (ν1/2 = 7 Hz) ppm). Figure 

73 shows the solid state structure of 9, which is isostructural to the known uranium analogue 

((C5Me5)2U(SMe)2, 10).107  

5.3.3 Crystal Structures 

 

a)       b) 

 

Figure 72. a) Side view and b) top-down view of complex 4 formed from the reactions detailed in Scheme 2, with 50% probability ellipsoids. 
Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Th(1)–S(1) = 2.785(7), Th(1)–S(2) = 3.024, Cent–Th(1) 
= 2.537(2), S(1)–Th(1)–S(1) = 13 

Compound 4 crystallizes in the tetragonal P4̅n2 space group (Figure 72). The lattice parameters of this structure 

are slightly shorter (a = 15.2456 Å and c = 10.1349 Å) than previously reported (a = 15.350(3) Å and c = 10.281(5) 

Å), which is a direct result of the temperature difference between experiments (140 K vs 298 K). Complex 4 has a 

distorted trigonal prism structure, with the ThS5 ring adopting a twist boat conformation, in agreement with the 

known structure.  The Th–S and Ccent–Th (Cent = C5Me5 centroid) bond distances as well as Ccent–Th–Ccent’ and S–

Th–S′ bond angles for 4 are comparable to Sattelberger’s compounds [(C5Me5)2ThS5] (Th–S = 2.768(4) Å, Ccent–Th 



 

118 
 

= 2.52 Å, Ccent–Th–Ccent’ = 129.9 °, S–Th–S′ = 113.3(1) °),113 as well as other similar thorium-calcogenide compounds 

[η5-1,3-(Me3C)2C5H3]2Th}(μ-CS3)2 (Th–S = 2.988(1) Å, Ccent–Th = 2.587(2) Å, Ccent–Th–Ccent’ = 117.5(1) °),118 

[(C5Me5)2Th(SCH2CH2CH3)2] (Th–S = 2.718(3) Å, Ccent–Th = 2.535 Å, Ccent–Th–Ccent’ = 134.9 °, S–Th–S′ = 102.5(2) °),114 

[η5-1,2,4-(Me3C)3C5H2]2Th}2-(μ-S)2] (Th–S = 2.709(2) Å, Ccent–Th = 2.659(9) Å, Ccent–Th–Ccent’ = 119.4(1) °, S–Th–S′ = 

76.8(1) °).119  

Compound 9 crystallizes in the orthorhombic space group Pbcn (Figure 73). The molecular structure of 9 can best 

be described as a pseudo-tetrahedral bent metallocene. Crystallographic comparisons between compounds 4 and 

9 show the Th–S bond distance in 4 (2.785(7) Å) is longer than in 9 (2.724(5) Å). Likewise, the Ccent–Th bond 

distance in 4 (2.537(2) Å) is slightly longer than in 9 (2.526(2) Å). The Ccent–Th–Ccent’ bond angle in 4 (130.11(6) °) 

is slightly more acute than in 9, (136.42(5) °), and could be the result of the dative interactions of the β sulfurs 

with thorium in 4. This last point is corroborated by comparing the thiolate–thorium–thiolate bond angles in 4 

(113.85(3) °) and 9 (98.81(3) °), since the β dative interactions take place inside the S-Th-S’ bond angle in 4. Thus 

compound 4 is more sterically encumbered than 9.  

Compound 9 can also be compared to the crystal structure of the uranium analogue, (C5Me5)2U(SMe))2 (10). The 

Th–S and Ccent–Th bond distances (2.724(5) and 2.526(2) Å, respectively) and the Ccent–Th–Ccent′, S–Th–S′, and Th–

S–C bond angles (136.42(5) °, 98.81(3) °, and 106.22(7) °, respectively) are longer and more obtuse than those 

reported for (C5Me5)2U(SMe)2 (10) (U–S = 2.639(3) Å, Ccent–U = 2.47(2) Å, Ccent–U–Ccent′ = 137.6(4) °, S–U–S′ = 

97.2(4) °, U–S–C = 108.1(5) °).107 The elongated Th–S distances in 10 are longer than the 0.05 Å expected difference 

between the ionic radii of uranium(IV) and thorium(IV),130 which may indicate greater covalency between uranium 

and the SMe- fragment.  
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Figure 73. ORTEP structure of 9. Hydrogens are removed for clarity and ellipsoids are at 50% probability. 

 

Table 26. Crystal data for (C5Me5)2Th(SMe)2. 

 (C5Me5)2Th(SMe)2 

Empirical Formula C22H36S2Th 

Formula Weight 596.67 

Crystal System Orthorhombic 

a [Å] 14.360(5) 

b [Å] 9.552(8) 

c [Å] 16.540(1) 

Β [°] 90 

V [Å3] 2256.7(3) 

Space Group Pbcn 

Z 4 

ρ [g/cm3] 1.756 

µ [MoΚα] 6.796 

Τ [Κ] 140(1) 

2Θmax [°] 57.28 

Min/max trans. 0.1935/0.3435 

Total reflns 24625 

Unique reflns 2820 

Parameters 120 

R1(wR1) (all data) 0.0133 (0.0185) 
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5.3.4 Mechanism 

During the investigation of the reaction of S8 with (C5Me5)2ThMe2 (5), several volatile byproducts (Me2Sn, n = 1–3) 

and (C5Me5)2Th(SMe)2 were discovered as potential intermediates, as identified by their 1H NMR spectroscopic 

resonances (in C6D6, δ = 1.74 ppm, 1.97 ppm, and 2.15 ppm for n = 1–3 respectively as compared to authentic 

standards). Once the reaction goes to completion, no other thorium complexes are observed (Figure 74). This 

might suggest that 5 can undergo insertion of S8 in the thorium-carbon bond to yield compound 4. Compound 9 

appears in the NMR spectrum at 2.11 ppm (C5Me5) and 2.51 ppm (CH3), denoted by asterisks in Figure 74.   

 

Figure 74. NMR data taken over the course of an hour shows the ingrowth of the intermediate (C5Me5)2Th(SMe)2 at 2.11 ppm and 2.51 

ppm (indicated by asterisks).  

It also appears that 9 will react with Me2S3 to form a second, unknown, intermediate at 2.07 ppm. In a separate 

experiment, (C5Me5)2Th(SMe)2 (2.11 ppm C5Me5, 2.51 ppm SMe) and Me2S3 (2.15 ppm) were reacted in an NMR 
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tube at room temperature (Figure 75). In less than 30 minutes, Me2S2 is present in the NMR at 1.98 ppm. The 

mechanism of the overall reaction to make (C5Me5)2ThS5 (2.02 ppm) is more complicated than initially thought, 

but seems to imply a sulfur insertion between the thorium-carbon bond in the first step.  

 

 

Figure 75. 1H NMR (400 MHz, C6D6) of (C5Me5)2Th(SMe)2 + Me2S3 

 

To further examine if (C5Me5)2Th(SR)2 was an intermediate, S8 was reacted with both (C5Me5)2Th(SMe)2 (9) and 

(C5Me5)2Th(SPh)2 (8) in  toluene at 70 °C. Both reactions yielded complex 4, as well as Me2Sn and Ph2Sn, respectively 

(n =1-3, Scheme 2). While compound 4 can be obtained in 98% yield from 9, 4 is only attainable from 8 in 71% 

yield, due to difficulties in removing nonvolatile Ph2S2.  
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5.4 Uranium 

5.4.1 Experimental 

Interest in comparisons between uranium and thorium chalcogenide complexes stems from the potential 

influence of 5f-electrons on the chemistries between these two actinides. The uranium analogue to 9 is 

known (10), and is described above. No known analogue to 4 exists and any attempts to synthesize it using 

the previous methods (Scheme 2) resulted in (C5Me5)H, (C5Me5)2, and unidentified uranium-sulfide 

products. In the first 30 minutes of the reaction, peaks appear at 10.06 and 8.89 ppm in the 1H NMR that 

were promising (Figure 76), but over time they disappear and an unidentified solid precipitates out. Also 

present in the NMR are (C5Me5)2 (1.77, 1.69, and 1.15 ppm) and (C5Me5)H (1.80, 1.75, 1.01, and 0.98 ppm); 

more evidence that the molecule is prone to decomposition as evidenced by the free (C5Me5) groups.  

 

 

Figure 76. 1H NMR spectrum (400 MHz, 295 K, C6D6) of the reaction between (C5Me5)2UMe2 and S8. 
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5.4.2 Results 

Comparisons between the structures of (C5Me5)2U(SMe)2 and (C5Me5)2Th(SMe)2 were previously 

mentioned, but the two compounds were also compared spectroscopically using UV-Vis-NIR data and 

cyclic voltammetry. Cyclic and square wave voltammetry were performed for both compounds as well as 

(C5Me5)2Th(SPh)2, in THF using [NPr4][B(C6F5)4] as the supporting electrolyte and referenced to 

ferrocenium/ferrocene. However, the results were not reproducible and therefore were inconclusive.  

UV-Vis-NIR spectroscopy was done for (C5Me5)2Th(SMe)2, (C5Me5)2Th(SPh)2, and (C5Me5)2U(SMe)2. Figure 

77 details the Near-IR region for all three complexes. Both thorium complexes show very little absorption, 

but weak peaks can be seen for the uranium complex. These peaks correspond to Laport-forbidden 

transitions, which are consistent with a uranium(IV) center.131 Figure 78 presents the UV-Visible spectra 

for all three complexes. Features in the UV-Visible region are generally indicative of electronic transitions 

between metal-based 5f orbitals and higher energy 6d metal-based orbitals, which explains why there are 

no apparent transitions for the thorium complexes.131  
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Figure 77. Near-IR absorption region for (C5Me5)2Th(SMe)2, (C5Me5)2Th(SPh)2, and (C5Me5)2U(SMe)2.  

 

Figure 78. UV-Visible spectra for (C5Me5)2Th(SMe)2, (C5Me5)2Th(SPh)2, and (C5Me5)2U(SMe)2.  
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5.5 Conclusions 
The data presented in this chapter show that (C5Me5)2ThS5 is a thermodynamic sink achievable through 

several synthetic routes. Evidence from NMR experiments suggests that the reaction of (C5Me5)2ThMe2 

and S8 first forms (C5Me5)2Th(SMe)2 as an intermediate, indicating the insertion of sulfur between the 

thorium-carbon bond as a step in the mechanism. The formation of Me2Sx during the course of the 

reaction supports this hypothesis. The novel complex (C5Me5)2Th(SMe)2 was fully characterized by 1H and 

13C NMR spectroscopy, elemental analysis, and X-ray diffractometry. Both 1H NMR spectroscopy and X-

ray crystallography were used to characterize (C5Me5)2ThS5, and the results were compared to literature 

values as well as to (C5Me5)2Th(SMe)2. 

The NMR results from small-scale experiments show that uranium does not behave chemically similarly 

to the thorium analogue under the examined conditions. The reaction of (C5Me5)2UMe2 and S8 may form 

the (C5Me5)2US5 analogue, but it quickly degrades into an insoluble uranium-sulfide product and (C5Me5)2. 

The ability of uranium to adopt multiple oxidation states may interfere with the stability of the desired 

product. However, a longer distance between the sulfur atoms and the metal center of the novel complex 

(C5Me5)2Th(SMe)2 compared to its known uranium analogue show that there is greater covalency between 

the metal and the  SMe- fragment in the uranium complex. This could be due to the involvement of the 

5f-electrons in bonding.  Differences in spectroscopic and electrochemical features between the 

thorium(IV) and uranium (IV) compounds have been shown, which could relate to additional f-electron 

bonding ability in uranium. 
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Chapter 6: C–X Activation Mediated by Uranium  

6.1  Background 
Transition metal mediated C–X (X = H, F, Cl, Br, or I) bond activations have been studied for decades as a 

way to improve synthetic routes to novel organometallic compounds.132-142 Theoretical calculations have 

shown that C–X activation is important for the formation of C–C bonds;133,134 because halides are generally 

good leaving groups, the activation barrier is lower thus promoting the formation of C–C bonds and the 

synthesis of organic (or organometallic) molecules.133  However, studies of actinide mediated C–X 

activation are lacking in the literature. Several organometallic U–F complexes have been studied,143-160 but 

of those, very few were formed using C–X activation techniques.153,160 Non-fluorinated uranium complexes 

have been used in studies of C–H activation,161-163 but there is a distinct lack in the literature of uranium-

based C–X activation exploration. The interest in the (C5Me5)2U–bpy (bpy = 2,2’-bipyridyl) system stems 

from its low-valent synthetic equivalence and of the potential for radical formation with the redox-active 

bpy ligand.151,164,165 The only other actinide example of addition of organics across a bpy ligand was 

reported in late 2016 by Garner et.al.166 Their example shows C–N bond activation and addition of an alkyl 

at the p-carbon of 2,2’–bipyridine bound to a thorium metal center. A few publications show examples of 

transition metal C–X bond activations that include bpy ligands on the metal; 140-142 however, the alkyl 

group adds to the metal center rather than across the bpy ligand.  

 

This chapter describes the reactivity of An-bpy compounds with a suite of benzyl halides to afford 

(C5Me5)2U(X)(bpy)Bn (Bn = benzyl, X = F, Cl, Br, I). These are unusual examples of C–X activation using 

organouranium compounds and feature a rare example of a uranium-fluoride bond. Interestingly, there 

is evidence of the trans effect, a weakening and lengthening of a metal-halide bond when it is trans to a 

more strongly bonded ligand, in all of the examples. Typically, the opposite is seen with actinide metal–

halide bonds.167,168 The U–F complex is the only one of the series that shows radical character in the 

bipyridine ring. The exploration of the mechanism behind the formation of (C5Me5)2U(X)(bpy)(Bn) is also 
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described, as well as evidence of potential f-electron participation in bonding. Understanding the 

chemistry of uranium in halide-containing environments is important for expanding the knowledge base 

of how the actinides may interact with fission products or in detonation environments that are rich in 

salts.  

6.2 Experimental 
 The starting materials (C5Me5)2U-bpy (11),165 its precursors,169 KC8,170 and [Cp2Co]F171 were prepared 

according to literature procedures. Benzyl chloride, benzyl bromide, and benzyl iodide were purchased 

from Aldrich and treated with a column of activated alumina before use to remove impurities or 

degradation products. All NMR data can be found in Appendix B and crystal structure parameters are 

located in Appendix C.  Crystal structures are described in Section 6.3.1. 

Synthesis of benzyl fluoride (12): A 20 mL scintillation vial was charged with a stir bar, [Cp2Co]F (0.1512 

g, 0.7265 mmol, 1.5 equiv), benzyl bromide (0.0592 mL, 0.4984 mmol), and 3 mL of C6D6. The reaction 

stirred at room temperature for 3 h to give full halide exchange by NMR. The solution was filtered through 

Celite and a glass wool plug to remove [Cp2Co]Br and give a clear, pale-green-colored solution of benzyl 

fluoride in C6D6. The solution was then added directly to the reaction described below to make 3. 1H and 

19F NMR spectra collected in benzene-d6 were consistent with data previously reported for benzyl 

fluoride.171,172  

Synthesis of (C5Me5)2U(F)(bpy)(Bn) (13): a) A 20 mL scintillation vial was charged with a stir bar, 

(C5Me5)2U-bpy (11, 0.1024g, 0.1542 mmol), benzyl fluoride (0.0250 mL, 0.2313 mmol, 1.5 equiv.) and 3 

mL of toluene. The solution turned red-brown immediately, and the majority of the reaction had taken 

place within 10 minutes at room temperature. The reaction mixture was stirred at room temperature for 

2 h. Volatiles were then removed under reduced pressure and the red-brown residue was re-dissolved in 

hexane, filtered through a Celite-padded frit, and washed with 20 mL of hexane. Volatiles were again 
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removed under reduced pressure and the tacky red-brown solid was re-dissolved in minimal hexane and 

cooled to –30 °C overnight to give red-brown crystalline (C5Me5)2U(bipy)benzyl-fluoride (0.0923 g, 0.1191 

mmol, 77.2 %). 1H NMR (benzene-d6, 298 K): δ 1.46 (d, 30H, C5Me5 isomer A), -2.51 (s, 40H, C5Me5 isomer 

B).  ATR-IR (Neat, 296 K, cm–1): ν 2898m, 2850m, 1977w, 1773s, 1734s, 1700s, 1558s, 1437s, 1365s, 1289s, 

1127s, 1013s, 952s, 770s, 740s, 698s, 639s, 536s. UV/Vis (Toluene, 296 K, 1 mM, cm–1 (M–1cm–1)): 33389 

(5763), 22026 (1525). NIR (Toluene, 296 K, 30 mM, cm–1
 (M–1cm–1)): 9524 (260.9), 9200 (245.7), 8776 

(226.3), 8313 (202.7), 7994 (178.9), 7648 (183.7), 6911 (125.8), 6494 (112.1), 6042 (78.7), 5700 (107.6), 

4840 (39.3), 4337 (70.5). mp: 152.5-154.9 °C. Anal. Calcd. For C37H45FN2U (mol. wt. 774.79): C, 58.20; H, 

6.39; N, 3.48. Found: C, 57.99; H, 6.41; N, 3.77. 

b) A 5 mL dram vial was charged with a stir bar, (C5Me5)2U(Br)(bpy)Bn (15, 7.30 mg, 0.0087 mmol), 

[Cp2Co]F (2.4 mg, 0.0115 mmol), and 0.5 mL C6D6. The reaction mixture was monitored at room 

temperature for 24 h. One isomer of the bromide converted to the fluoride in less than quantitative yields. 

After 24 h, (C5Me5)2 had formed and bromide starting material was still present. 

Synthesis of (C5Me5)2U(Cl)(bpy)(Bn) (14): A 20 mL scintillation vial was charged with a stir bar, (C5Me5)2U-

bpy (0.1019 g, 0.1534 mmol), benzyl chloride (0.0175 mL, 0.1521 mmol) and 3 mL of toluene. The reaction 

mixture was stirred at room temperature for 2 h, although the reaction changed color to dark brown 

immediately. Volatiles were then removed under reduced pressure and the brown residue was re-

dissolved in hexane, filtered through a Celite-padded frit, and washed with 20 mL of hexane. Volatiles 

were again removed under reduced pressure and the tacky brown solid was re-dissolved in minimal 

hexane and cooled to –30 °C overnight to give brown crystalline (C5Me5)2U(Cl)(bpy)Bn (0.0635 g, 0.0803 

mmol, 52.3%). 1H NMR (benzene-d6, 298 K): δ 13.15 (d, 30H, C5Me5 isomer A), 6.03 (s, 44H, C5Me5 isomer 

B). (C5Me5)2UCl2 is also present by NMR.169 ATR-IR (Neat, 296 K, cm–1): ν 2900m, 2850m, 1636s, 1600s, 

1474s, 1440s, 1366s, 1290s, 1246s, 1162s, 1126s, 1010s, 885s, 743s, 699s, 610s, 558s. UV/Vis (Toluene, 

296 K, 1 mM, cm–1 (M–1cm–1)): 33223 (2772), 22883 (1018).  NIR (Toluene, 296 K, 30 mM, cm–1
 (M–1cm–1)): 
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10560 (76.1), 9268 (141.5), 8503 (97.1), 8217 (110.1), 7339 (73.5), 7018 (67.8), 6361 (67.8), 6127 (79.3), 

5736 (67.4), 4568 (60.4), 4207 (74.5). mp: 213.1 °C – 215.3 °C. Elemental analysis for C37H45ClN2U (mol. 

wt. 791.25) was not identified after three attempts.  

Synthesis of (C5Me5)2U(Br)(bpy)(Bn) (15): A 20 mL scintillation vial was charged with a stir bar, (C5Me5)2U-

bpy (0.1999 g, 0.3010 mmol), benzyl bromide (0.0518 g, 0.3031 mmol) and 3 mL of toluene. The reaction 

mixture was stirred at room temperature for 2 h, although the reaction changed color to dark brown 

immediately. Volatiles were then removed under reduced pressure and the brown residue was re-

dissolved in hexane, filtered through a Celite-padded frit, and washed with 30 mL of hexane. Volatiles 

were again removed under reduced pressure and the tacky brown solid was re-dissolved in minimal 

hexane and cooled to –30 °C overnight to give brown crystalline (C5Me5)2U(Br)(bpy)Bn (0.1001 g, 0.1156 

mmol, 38.4 %). 1H NMR (benzene-d6, 298 K): δ 14.93 (s, 15H, C5Me5 isomer A),  14.60 (s, 15H, C5Me5 isomer 

A), 8.55 (d. 85H, C5Me5 isomer B). (C5Me5)2UBr2 is also present by NMR.173  ATR-IR (Neat, 296 K, cm–1): ν 

2894m, 2850m, 1636s, 1600s, 1572s, 1440s, 1365s, 1290s, 1245s, 1162s, 1126s, 1009s, 883s, 742s, 699s, 

620s, 537s. UV/Vis (Toluene, 296 K, 1 mM, cm–1 (M–1cm–1)): 33278 (4616.6), 23202 (1682). NIR (Toluene, 

296 K, 30 mM, cm–1
 (M–1cm–1)): 10515 (34.7), 9255 (107.7), 8889 (68.5), 8237 (81.7), 7396 (53.3), 7052 

(55.3), 6402 (44.8), 6209 (52.4), 5767 (27.3), 4530 (24.7), 4094 (34.2). mp: 203.4-206.1 °C.  Anal. Calcd. 

For C37H45BrN2U (mol. wt. 835.70): C, 53.18; H, 5.43; N, 3.35. Found: C, 53.04; H, 5.44; N, 3.32.  

Synthesis of (C5Me5)2U(I)(bpy)(Bn) (16): a) A 20 mL scintillation vial was charged with a stir bar, (C5Me5)2U-

bpy (0.0993 g, 0.1495 mmol), benzyl iodide (0.0187 mL, 0.1500 mmol) and 5 mL of toluene. The reaction 

mixture was stirred at room temperature for 2 h, although the reaction changed color to dark brown 

immediately. Volatiles were then removed under reduced pressure and the dark brown residue was re-

dissolved in hexane, filtered through a Celite-padded frit, and washed with 30 mL of hexane. Volatiles 

were again removed under reduced pressure and the tacky dark brown solid was re-dissolved in minimal 

hexane and cooled to –30 °C overnight to give dark brown crystalline (C5Me5)2U(I)(bpy)Bn (0.0852 g, 
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0.0965 mmol, 65 %). 1H NMR (benzene-d6, 298 K): δ 16.51 (s, 15H, C5Me5 isomer A), 15.66 (s, 15H, C5Me5 

isomer A), 11.53 (d, 80H, C5Me5 isomer B). (C5Me5)2UI2 is also present by 1H NMR.169 ATR-IR (Neat, 296 K, 

cm–1): ν 3853s, 3750s, 3744s, 3675m, 3629m, 2427m, 2159s, 2032s, 1653s, 1559s, 1540s, 1437s, 1325s, 

1290s, 1126s, 1010s, 988s, 769s, 737s, 728s, 614s.  UV/Vis (Toluene, 296 K, 0.50 mM, cm–1 (M–1cm–1)): 

22831 (4838) NIR (Toluene, 296 K, 30 mM, cm–1
 (M–1cm–1)): 10395 (37), 9461 (78), 9208 (94), 8846 

(72), 8268 (80), 7424 (53), 7025 (48), 6433 (43), 6166 (51), 5999 (39), 5850 (36), 5571 (22), 4638 

(21), 4590 (26), 4544 (32), 4480 (37). mp: 162.3-163.1 °C. Anal. Calcd. For C37H45IN2U (mol. wt. 882.70): 

C, 50.35; H, 5.14; N, 3.17. Found: C, 50.95; H, 5.40; N, 3.06. 

b) An NMR tube was charged with a stir bar, (C5Me5)2U(Br)(bpy)Bn (0.0053 g, 0.0063 mmol), 

iodotrimethylsilane (0.9 µL, 0.0063 mmol) and 0.5 mL of C6D6. Within 40 minutes, the halide exchanged 

(in less than quantitative yields) to give one isomer of (C5Me5)2U(I)(bpy)Bn.  

Synthesis of (C5Me5)2U(tBu2bpy) (17): A 20 mL scintillation vial was charged with a stir bar, (C5Me5)2UI(py) 

(0.1025 g, 0.1436 mmol), KC8 (0.0299 g, 0.2212 mmol, 1.5 equiv.), 4,4’-tBu2-2,2’-bipyridyl (tBu2bpy, 0.0393 

g, 0.1464 mmol) and 3 mL of toluene. The reaction mixture was stirred at room temperature for 24 h, and 

then was filtered through a Celite-padded frit and washed with 20 mL of toluene. Volatiles were then 

removed under reduced pressure and the dark-green residue was taken up in a minimum amount of 

hexane and toluene and cooled to –30 °C overnight to give black crystalline (C5Me5)2U(tBu2bpy) (0.0850 g, 

0.1094 mmol, 76.2 %). 1H NMR (benzene-d6, 298 K): δ -1.89 (s, 30H, C5Me5), -5.53 (s, 18H, tBu), -23.54 (s, 

2H, o-bpy), -82.19 (s, 2H, m-bpy), -91.39 (s, 2H, m-bpy). ATR-IR (Neat, 296 K, cm–1): 2950m, 2898m, 2853m, 

1576m, 1427s, 1362s, 1321s, 1278s, 1197s, 1097m, 947s, 862s, 774s, 639m, 538s. UV/Vis (Toluene, 296 

K, 0.5 mM, cm–1 (M–1cm–1)): 33333 (1531), 27360 (1544), 20576 (575), 12763 (438). NIR (Toluene, 296 K, 

5 mM, cm–1
 (M–1cm–1)): 9162 (137), 7704 (140), 5886 (80), 4394 (134). mp: 125.3-127.7 °C.   
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Electrochemical studies were performed using 10 mg of 17, 390 mg of electrolyte ([NPr4][BArF
4]) in either 

2.6 g of THF or 3.6 g of trifluorotoluene. Both cases yielded the same result: there is no redox event 

between -2 volts and 3 volts.  

Synthesis of (C5Me5)2U(4,4’-Me2bpy) (18): A 20 mL scintillation vial with stir bar was charged with 

(C5Me5)2UI(py) (0.2529 g, 0.3542 mmol), KC8 (0.0702 g, 0.5193 mmol, 1.5 equiv), 4,4’-bpy (0.0658 g, 0.3571 

mmol), and 5 mL of toluene. The reaction stirred at room temperature for 24 hr, filtered through a Celite-

padded medium porosity frit, and rinsed with toluene (25 mL). Volatiles were removed under reduced 

pressure at 50 °C to give a black oil. The oil was triturated in hexane and volatiles were again removed to 

give (C5Me5)2U(4,4-Me2bpy) as a black microcrystalline powder (0.2036 g, 0.2939 mmol, 83% yield). 1H 

NMR (400 MHz, 298K, C6D6): δ 38.27 (s, 6H, Me), -2.45 (s, 30H, C5Me5), -27.98 (s, 2H, bpy), -76.09 (s, 2H, 

bpy), -98.22 (s, 2H, bpy). ATR-IR (Neat, 296 K, cm–1): 2958w, 2891s, 2850s, 2721w, 2384w, 2159w, 1968b, 

1569s, 1490s, 1431s, 1374s, 1322s, 1265s, 1173s, 1122w, 1014w, 944s, 865s, 848s, 761s, 725s. UV/Vis 

(Toluene, 296 K, 0.5 mM, cm–1 (M–1cm–1)): 34843 (22842), 33670 (23712), 27473 (20974), 20877 (8925). 

NIR (Toluene, 296 K, 30 mM, cm–1
 (M–1cm–1)): 9533 (206), 8489 (206), 7107 (166), 5711 (169).  mp: 228.5 

– 230.6 °C. 

Electrochemical studies were performed using 10 mg of 18, 390 mg of electrolyte ([NPr4][BArF
4]) in 2.6 g 

of THF. There was no redox event between -2 volts and 3 volts.  

Synthesis of (C5Me5)2U(Cl)(4,4’-tBu2bpy)(Bn) (19): A 20 mL scintillation vial was charged with a stir bar, 17 

(0.1021 mg, 0.1314 mmol), benzyl chloride (0.0148 mL, 0.1286 mmol), and toluene (3 mL). The reaction 

mixture was stirred at room temperature for 2 hr. Volatiles were removed under reduced pressure and 

the dark brown residue was taken up in hexane, filtered through a Celite-padded frit, and washed with 10 

mL of hexane. Volatiles were again removed under reduced pressure and the dark brown tacky solid was 

dissolved in a mixture of toluene and hexane and cooled to -30 °C overnight to give brown needle-shaped 
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crystals (0.0891 mg, 0.0984 mmol, 75 %). 1H NMR (benzene-d6, 298 K): δ 13.31 (s, 15H, C5Me5 isomer A), 

12.56 (s, 15H, C5Me5 isomer A), 6.96 (s, 30H, C5Me5 isomer B).  ATR-IR (Neat, 296 K, cm–1): 3853b, 3801w, 

3745s, 3676w, 3629w, 3055w, 2956w, 2893s, 2852s, 2721w, 1965w, 1701w, 1614s, 1558s, 1539s, 

1429s, 1363w, 1336w, 1246s, 1205w, 1082s, 1011s, 962s, 867w, 814w, 733s, 696s, 615w. UV/Vis 

(Toluene, 296 K, 5 mM, cm–1 (M–1cm–1)): 26954 (31200), 22523 (21800), 16420 (4000). NIR (Toluene, 

296 K, 10.5 mM, cm–1
 (M–1cm–1)): 9542 (427), 9328 (513), 8658 (703), 8123 (475), 7283 (342), 6807 

(370), 6369 (655), 6143 (646), 5879 (228), 4312 (503). mp: 187.2 - 189.1 °C.  

Synthesis of (C5Me5)2U(6,6’-Me2bpy) (20): A 20 mL scintillation vial was charged with a stir bar, 

(C5Me5)2UI(py) (0.1014 mg, 0.1420 mmol), KC8 (0.0290 mg, 0.2145 mmol, 1.5 equiv.), 6,6’-Me2bpy (0.0261 

mg, 0.1417 mmol) and toluene (5 mL). The reaction mixture was stirred at room temperature for 24 hr, 

filtered through a Celite-padded frit, and rinsed with ~20 mL of toluene. Volatiles were removed under 

reduced pressure to give a dark brown-black residue. The dark oil was triturated with hexane, and volatiles 

were again removed under reduced pressure. The dark brown tacky solid was dissolved in toluene and 

cooled to -30 °C overnight to give brown crystals (0.0811 mg, 0.1171 mmol, 82 %). 1H NMR: (benzene-d6, 

298 K): 2.61 (s, 30H, C5Me5), -8.88 (s, 6H, Me), -20.57 (s, 2H, bpy), -77.10 (s, 2H, bpy), -96.45 (s, 2H, bpy), 

-126.42 (s, 2H, bpy).  
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6.3 Results and Discussion 
The reaction of (C5Me5)2U(bpy) (11) with benzyl halides in toluene forms a novel suite of compounds 

(C5Me5)2U(X)(bpy)Bn (Bn = benzyl, X = F (13), Cl (14), Br (15), I (16)). As illustrated in 

 

Equation 9, the synthesis of these molecules is relatively simple, and occurs quite quickly. However, yields 

are not high (<80%), even when conditions (e.g. temperature, reaction time, equivalents of benzyl–X) are 

changed. Other products are present, including (C5Me5)2UX2 (X = Cl, Br, I).  

 

Equation 9. Reaction of (C5Me5)2U-bpy with benzyl-X to form (C5Me5)2U(X)(bpy)Bn 

The majority of the benzyl-X (X = Cl, Br, I) starting materials were available commercially; however, it was 

necessary to synthesize benzyl fluoride (12) on an as-needed basis given its propensity to degrade at room 
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temperature. This was done in quantitative yields by reacting benzyl–X (X = Cl, Br) with 1.5 equivalents of 

[Cp2Co]F (Cp = C5H5) – a “naked”, anhydrous fluoride source first used by Bennett et.al.171  The insoluble 

byproduct [Cp2Co]X can be easily removed by filtration, leaving benzyl fluoride in solution. 

 

Figure 79. 1H NMR spectrum showing both isomers of (C5Me5)2U(I)(bpy) 
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Figure 79 shows the 1H NMR spectrum for (C5Me5)2U(I)(bpy)Bn, and the peak shifts and integrations 

suggest that there are two isomers present. Both isomer structures are also shown; in one case, the benzyl 

ring can add to the pyridine ring closest to the halide; in the other isomer, the benzyl ring adds to the 

pyridine ring farthest from the halide. The peak at 7.16 ppm is the C6D6 solvent peak, and both toluene 

and hexane are present in the spectrum at 2.11 and 1.26, 0.88 ppm respectively. Because these halide 

complexes are paramagenetic, due to the oxidation state of the uranium(IV) metal center, the spectrum 

covers a wide range of chemical shifts from 50 ppm to -64 ppm. It is difficult to tell to which isomer each 

peak belongs, but the peaks at either end of the spectrum likely belong to the protons on the pyridine 

rings.  The two peaks at 16.51 and 15.66 ppm correspond to the methyl groups on the cyclopentadienyl 

rings for one of the isomers; the other isomer appears at 11.53 and 11.40 ppm.  Based on the integrations 
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of these four peaks, the isomer at 11.53 and 11.40 ppm is roughly 3 times more likely to be formed. The 

results seen in this NMR spectrum are typical for all four halide complexes. Data for the remaining 

complexes can be found in Appendix B: NMR Data  

Although it is difficult to distinguish which peaks belong to which isomer, it is evident that there are two 

isomers present for each halide compound. Figure 80 shows the 1H NMR of all four halide complexes 

stacked together. The peak at 7.16 ppm represents C6D6 solvent, and the peak at 2.11 ppm is from toluene. 

The shifts representing the (C5Me5) ligands for each isomer are labeled in Figure 80; the smaller the halide, 

the more upfield the chemical shifts.  

 



 

137 
 

 

 

Figure 80. NMR of all four halide complexes showing the presence of two isomers of each complex. 

  

In an attempt to avoid the extra steps necessary to obtain the benzyl fluoride, [Cp2Co]F was reacted 

directly with 14 and 15. However, halide exchange with 14 does not occur, possibly due to bulky sterics 

around the metal center. After 2 h at room temperature (C5Me5)2 formation can be seen by NMR. When 

[Cp2Co]F and 15 are reacted at room temperature (Equation 10), formation of one isomer of 13 can be 

seen by NMR. Not only is bromide a better leaving group than chloride,174 the U–Br bond length 

(2.8650(13) Å) is longer than the U–Cl bond length (2.6793(13) Å), which may allow for easier halide 

exchange. Based on the appearance of only one fluorine isomer in the NMR, only one of the isomers is 

Fluoride 2 
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able to undergo halide exchange. After 24 h at room temperature, (C5Me5)2 is seen in the NMR, but both 

the bromide starting material and the fluoride product are still present. It is conceivable that the other 

fluoride isomer is falling apart because it is unable to exchange the halide.  

It is also possible to exchange the bromide for iodide using iodotrimethylsilane (TMS–I, Equation 10). After 

40 minutes at room temperature, peaks corresponding to (C5Me5)2U(I)(bpy)Bn appear in the 1H NMR, 

though not in high relative yields.  

 

Equation 10. Exchange of bromine using [Cp2Co]F 

 

6.3.1 Crystal Structures 

Crystals of 13-16 suitable for X–ray diffraction were grown from hexane solutions at -30 °C. Interestingly, 

the crystal structure of 13 shows the benzyl group adding to the bpy ring farthest from the halide, whereas 
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in 14-16  the benzyl group adds to the bpy ring closest to the halide (see 

 

Figure 81). The evidence suggests that isomers of all four compounds exist, due to the appearance of two 

species in the NMR and crystal structure evidence that it is possible for the benzyl group to add to either 

bpy ring. 

 

 

 

a) 
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b) 
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c)  

 

 

d)  

 

Figure 81. ORTEP drawings of the bpy benzyl halide series (ellipsoids at 50% probability, hydrogens excluded for clarity). A) 
(C5Me5)2U(F)(bpy)Bn has the benzyl group pointing away from the fluoride. B) (C5Me5)2U(Cl)(bpy)Bn has the benzyl group pointing 
in the same direction as the chloride   C) (C5Me5)2U(Br)(bpy)Bn has the benzyl group pointing in the same direction as the bromide. 
D) (C5Me5)2U(I)(bpy)Bn also has the benzyl group pointing in the same direction as the halide.  
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Table 27. Select bond distances (Å) and angles (°) for the halide series 3-6. a denotes the centroid of the Cp* (Cp* = C5Me5) ring. 
Both isomers are reported for 3.  

(C5Me5)2U(X)(bpy)Bn U – Cp*a U – N(1) U – N(2) U – X 
Cp*a – U – 

Cp*a 

N(1) – U 
– N(2) 

3 (X = F) 

1) 2.50(1), 
2.48(1) 

2) 2.50(1), 
2.48(1) 

1) 2.335(10) 
2) 2.326(9) 

1) 2.519(10) 
2) 2.577(9) 

 

1) 2.144(6) 
2) 2.123(6) 

 

1) 140.1(4) 
2) 137.5(4) 

 

1) 64.7(3) 
2) 64.0(3) 

 

4 (X = Cl) 2.511(4) 2.309(4) 2.525(4) 2.6793(13) 141.1(1) 65.14(15) 

5 (X = Br) 2.515(4) 2.313(4) 2.511(4) 2.8650(13) 140.9(1) 65.27(14) 

6 (X = I) 2.526(8) 2.312(9) 2.522(8) 3.104(1) 139.7(2) 65.2(3) 

 

Table 27 shows select bond distances and angles for compounds 13-16. It is worth noting that the U–X 

bond distance in this series of compounds increases significantly as the size of the halide increases. This 

is most likely due to the increase in radius of the halide from fluorine to iodine. This increase in bond 

distance is consistent with literature trends among other uranium-halide compounds.150,169,173,175,176 

Another important feature of these compounds to note is that the bipyridine-like structure is no longer 

reduced (as it is for (C5Me5)2U(2,2’–bpy)165) in all but the fluorine compound. This can be seen through the 

bond length of the 2,2’ bond between pyridine rings. In free (e.g. neutral) bipyridine, that bond length is 

1.490(3) Å, whereas in reduced bipyridine rings, the length is shortened to between 1.409(13) Å and 

1.45(2) Å.165 The bond lengths of the 2,2’-bond in the pyridyl ligand for the chloride (1.479(7) Å), the 

bromide (1.476(7) Å), and the iodide (1.479(16) Å) are more similar to the neutral bipyridyl. However, for 

the fluoride (1.382(18) Å and 1.449(16) Å), both isomers could be within the range of a reduced bipyridyl 

system.  

Very few similar compounds exist in the literature; listed in Table 28 are select bond distances and angles 

for (C5Me5)2UF2(py),150 (C5Me5)2UCl2,176 (C5Me5)2UBr2,173 and (C5Me5)2UI2.175 The bond length between 

uranium and the halide is longer in most of the compounds prepared in this work compared to 

(C5Me5)2UX2. This may be explained by the trans effect whereby a strongly bound ligand (bpy) is trans to 
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the less electronegative halide, causing the U–X bond to be lengthened. Typically with actinides the 

inverse is seen, 167,168 but that does not appear to be the case in the majority of the examined molecular 

systems. However, for one of the fluorine isomers, the U–F bond length (2.123(6) Å) is shorter than the 

known U-F bond length in (C5Me5)2UF2(py) (2.146(5) Å).150 This could be an example of the inverse trans 

effect, given that fluorine is extremely electronegative.  

Table 28. Comparison of select bond distances (Å) and angles (°) between this work and similar known compounds. a denotes 
the centroid of the (C5Me5) ring. b This work. cReference150  dReference176  eReference173 fReference175. NR = Not Reported. 

Compound U – Cp*a U – X Cp*a – U – Cp*a 

(C5Me5)2U(F)(bpy)Bnb 1)2.50(1), 2.48(1) 
2)2.50(1), 2.48(1) 

1) 2.144(6) 
2) 2.123(6) 

 

1) 140.1(4) 
2) 137.5(4) 

 

(C5Me5)2UF2(py)c 2.482 
2.485 

2.146(5) 139.93 

(C5Me5)2U(Cl)(bpy)Bnb 2.511(4) 2.6793(13) 141.1(1) 

(C5Me5)2UCl2d 2.47(3) 2.583(6) 132(1) 

(C5Me5)2U(Br)(bpy)Bnb 2.515(4) 2.865(13) 140.9(1) 

(C5Me5)2UBr2
e 2.438(4) 2.7578(5) 137.57(15) 

(C5Me5)2U(I)(bpy)Bnb 2.526(8) 3.104(1) 139.7(2) 

(C5Me5)2UI2
f 2.430 

2.445 
2.9807(9) 
2.9868(9) 

136.43 

 

Mehdoui et.al. published (C5Me5)2U(bpy)I in 2005 and a comparison between that structure164 and the 

corresponding iodine structure reported in this work are listed in Table 29. The greater difference 

between the U–N(1) and U–N(2) bond distances in the synthesized structures is most likely due to the 

addition of the benzyl group to one ring of the bpy ligand. The U–N(1) bond, corresponding to the pyridine 

ring without the benzyl group, is significantly shorter; the ligand has become skewed due to the presence 

of the benzyl ring.  There is also a decrease in the bond angle between the (C5Me5) centroids and the 

uranium metal center; likely the (C5Me5) ligands were forced to move closer together to accommodate a 

bulky benzyl ligand into the system. 
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Table 29. Comparison of select bond distances (Å) and angles (°) between this work and similar known U-I compounds. a 

denotes the centroid of the (C5Me5) ring. b This work. c Reference164 

Compound U-Cp*a U – N(1) U – N(2) U – X Cp*a – U – Cp*a N(1) – U – N(2) 

(C5Me5)2U(I)(bpy)Bnb 2.526(8) 2.312(9) 2.522(8) 3.104(1) 139.7(2) 65.2(3) 

(C5Me5)2U(bpy)Ic 2.82(3) 2.635(5) 2.561(4) 3.2135(4) 141.28 62.39(15) 

6.3.2 Electrochemistry 

Electrochemical analysis was performed on all of the complexes described in this chapter using ferrocene 

as an internal standard. For an explanation on the conditions, see Chapter 1 Section 1.13. Although 

(C5Me5)2Ubpy was published by Bart’s group in 2012,165 the cyclic voltammogram was never discussed. 

Figure 82 shows the cyclic voltammogram for (C5Me5)2Ubpy. There are two reversible redox events at -

3.09 and -3.64 V, likely corresponding to the U(III)/U(IV) couple and a ligand-based event, respectively.131 

The aromaticity of the bypyridyl rings on the (C5Me5)2U(X)(bpy)(Bn) has been disrupted, likely leading to 

a difference in electrochemical behavior, but the unsubstituted compound is a good place to start for 

comparisons. In all of the cyclic voltammograms shown below, the legend in the top left corner contains 

a number of variables defined during the experiment. The initial point (IP) describes the voltage at which 

the experiment started; V1 defines the most negative voltage reached during the experiment; V2 defines 

the most positive voltage reached; the final point (FP) describes where the experiment stopped; and the 

scan rate (SR) explains the velocity of the scan in millivolts per second.  
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Figure 82. Cyclic voltammogram for (C5Me5)2Ubpy 
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Figure 83. Cyclic voltammogram for (C5Me5)2U(F)(bpy)(Bn) 

 

Figure 83 shows the cyclic voltammogram for (C5Me5)2U(F)(bpy)(Bn). Fluorine is the most electronegative 

element on the periodic table, and as such, the electrochemistry of fluorinated species is distinct from its 

other halogen analogues. There are two irreversible and one quasi-reversible events in the fluorine 

voltammogram. The first is in the anodic region at -1.34 V. It is likely ligand based, perhaps due to oxidative 

events on the C5Me5 ligands.131 The second irreversible event is in the cathodic region at -2.47 V, and is 

likely ligand based. What appears to be a quasi-reversible event is located at -2.816 V. Based on literature 

data, this could be due to the U(III)/U(IV) couple.131   
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Figure 84. Cyclic voltammogram for (C5Me5)2U(Cl)(bpy)(Bn) 

The cyclic voltammogram for (C5Me5)2U(Cl)(bpy)(Bn) is depicted in Figure 84. There is one irreversible 

event in the anodic region at -0.268 V, possibly due to the C5Me5 ligand oxidation. There is a quasi-

reversible event in the cathodic region at -2.30 V, and a fully reversible redox event at -2.80 V. These are 

due to a ligand-based event and the U (III)/U(IV) couple, respectively.  
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Figure 85. Cyclic voltammogram for (C5Me5)2U(Br)(bpy)(Bn) 

There are several similarities between the cyclic voltammograms for the chloride (Figure 84) and bromide 

(Figure 85) analogues. The ligand-based irreversible event is present at -0.524 V, as are the quasi-

reversible and fully reversible events at -2.48 and -3.03 V, respectively. The reversible event at -2.48 V 

likely corresponds to the U(III)/U(IV) couple. There are additional events in the bromide voltammogram, 

including a small irreversible event at -2.71 V and a reversible event at -2.00 V. These may be ligand based.  
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Figure 86. Cyclic voltammogram for (C5Me5)2U(I)(bpy)(Bn) 

The iodine analogue (Figure 86) is not extraordinarily different from the chloride and bromide compounds. 

There is an irreversible event in the anodic region at 0.14 V in addition to the expected irreversible event 

at -0.15 V. In the cathodic region, an irreversible event at -2.15 V is present, along with a reversible redox 

event at -2.69 V, corresponding to the U(III)/U(IV) couple.  
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Figure 87. Comparison of cyclic voltammograms for the (C5Me5)2U(X)(bpy)(Bn) series. 

A comparison of the cyclic voltammograms all four halide compounds is shown in Figure 87. While they 

are not identical, they do share similarities. An irreversible event in the anodic region representing 

oxidations on the C5Me5 ligand is evident in all four sets of data, as well as a reversible redox event 

between -2.69 and -3.03 V corresponding to the U(III)/U(IV) couple. There are several irreversible and 

quasi-reversible events in each voltammogram that likely are from events on the ligands. In general, as 

the size of the halide increases, the events in the voltammogram shift to become more positive. The 

asterisks in the voltammogram indicate an example of the peaks in this progression: from the pink line of 

the iodine spectrum to the blue line of the bromide spectrum to the green line of the chloride spectrum, 

the peaks corresponding to the U(III)/U(IV) couple shift to less negative values.  

* 

* 

* 
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6.3.3 Mechanistic Studies 

In all of these compounds, the benzyl group adds only to the para position of the ring. Computational 

studies performed within the group* show that the para position has an almost neutral electrostatic 

charge, which would facilitate the addition of the benzyl ring to that position.  The ortho positions on the 

bpy rings have slightly positive electrostatic charges, although their orbital densities are not conducive to 

addition. Therefore the theory is that, rather than a direct oxidative addition to the para position, the 

benzyl group is actually adding to the electropositive ortho position and migrating to the para positions, 

which have higher orbital densities. To support this theory, preliminary studies using substituted bipyridyl 

complexes reacted with benzyl–X were done. The (C5Me5)2U(R2bpy) (17, R = 4,4’-tBu; bpy = 2,2’-bipyridyl; 

18, R = 4,4’-Me) complexes were synthesized as shown in Equation 11.  

 

Equation 11. Formation of (C5Me5)2U(R2bpy) (R = tBu. Me) 

When reacted with benzyl chloride under analogous conditions to previous reactions, the benzyl group 

still added to the para position to make (C5Me5)2U(Cl)(tBu2bpy)Bn (19, see Figure 88). The addition of bulky 

groups to the para position does not appear to be enough to prevent the addition of the benzyl. To test 

the hypothesis that the benzyl group first adds to the ortho position of the bipyridine ring, (C5Me5)2U(6,6’-

Me2bpy) (20) was synthesized as shown in Equation 12. 

                                                           
* Acknowledgement to Dr. George Stanley (LSU) 
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Equation 12. Synthesis of (C5Me5)2U(6,6'-Me2bpy) 

When 20 was reacted with benzyl-chloride, the resulting products were (C5Me5)2UCl2, free 6,6’-Me2bpy, 

and an unidentified solid. Because the ortho positions of the bipyridyl rings were blocked, the benzyl 

group was not able to add to the ring and then migrate to its final position. This is evidence to support the 

hypothesis that the mechanism of formation for the (C5Me5)2U(X)(bpy)(Bn) complexes begins with 

addition of the benzyl group to the ortho position of the bpy ring, followed by a migration of the group to 

its final place. However, these data are not enough to definitively argue that this is the only mechanism 

by which these complexes could be formed.  

6.3.4 Crystal Structures 

Crystal structure data for both (C5Me5)2U(tBu2bpy) (17) and (C5Me5)2U(4,4’-Me2bpy) (18) were unable to 

be obtained in high quality, though the low-quality data confirms the structures match what is shown in 

Equation 11. 
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Figure 88. ORTEP view of 19. Hydrogens omitted for clarity; ellipsoids at 50% probability. 

The crystal structure of (C5Me5)2U(Cl)(tBu2bpy)Bn (19) is shown in Figure 88. As with most of the halide 

complexes, the benzyl group added to the pyridine ring closest to the halide, although, it has a different 

geometry relative to the pyridine groups. The tert-butyl group on the same ring is no longer in the plane 

of the bipyridine, but has shifted to be roughly 65 ° out of the plane. The bond lengths and angles for 

complex 19 are listed in Table 30, and are compared to those for (C5Me5)2U(Cl)(bpy)Bn (14). The bonds 

and angles are, for the most part, comparable between the two compounds. However, it is worth noting 

that in complex 19 the U–Ccent distances are not identical, and the angle of and the Ccent1–U–Ccent2 bonds 

is significantly smaller, indicating a shift around the metal center to accommodate the extra bulk of the 

tert-butyl groups.  
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Table 30. Comparison of certain bond lengths and angles between complexes 19 and 14. 

Bond Distance (Å) or Angle (°) for 19 Distance (Å) or Angle (°) for 14 

U–N1 2.354(3) 2.309(4) 

U–N2 2.523(3) 2.525(4) 

U–Ccent1 2.530(4) 2.511(4) 

U–Ccent2 2.493(4) 2.511(4) 

U–Cl 2.6843(16) 2.6793(13) 

N1–U–N2 65.29(11) 65.14(15) 

Ccent1–U–Ccent2 135.8(1) 141.1(1) 

 

 

Figure 89. ORTEP image of (C5Me5)2U(6,6'-Me2bpy). Hydrogens omitted for clarity; ellipsoids at 50% probability. 

Figure 89 shows the crystal structure of (C5Me5)2U(6,6’-Me2bpy) (20). Complex 20 crystallizes as a triclinic 

P-1 space group. The crystal structure of (C5Me5)2(4,4’-Me2bpy) (18) was also solved; although the data is 

not high quality, it does give an idea of the nature of the bonding within the molecule. Complex 18 

crystallizes as a monoclinic P21/c, which is slightly more symmetric than complex 20. The anti-symmetry 
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of 20 is more apparent after analysis of certain bond lengths and angles (Table 31). The distances of the 

U–Ccent bonds are not identical, which shows the molecule is not centered on an inversion plane.  

Table 31. List of bond lengths and angles for complex 10. 

Bond Distance (Å) or Angle (°) for 20 

U–N1 2.447(7) 

U–N2 2.429(4) 

U–Ccent1 2.495 

U–Ccent2 2.552 

N1–U–N2 66.02(15) 

Ccent1–U–Ccent2 136.02 

 

6.3.5 Electrochemistry 

Electrochemical studies were performed on (C5Me5)2U(R2bpy) (R = tBu, Me) and 

(C5Me5)2U(Cl)(tBu2bpy)(Bn). Neither (C5Me5)2U(R2bpy) molecule gave redox events in either THF or 

trifluorotoluene, but the cyclic voltammogram for (C5Me5)2U(Cl)(tBu2bpy)(Bn) is shown in Figure 90. There 

is an irreversible event in the anodic region at -0.34 V, likely related to oxidation events on the C5Me5 

ligand, and a reversible redox event at -2.51 V corresponding to the U(III)/U(IV) couple. This value for the 

U(III)/U(IV) couple is fairly consistent with literature values: (C5Me5)2U[η2-(N,N’)-tetrazolate]2, -1.88 V;131 

(C5Me5)2UCl2, -1.85 V;177 (C5Me5)2UMe2, -2.41 V;177 (C5Me5)2U(CH2Ph)2, -1.95 V.177    
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Figure 90. Cyclic voltammogram for (C5Me5)2U(Cl)(tBu2bpy)(Bn) 

 

Though the mechanism of formation may be better understood, the extent of the participation of f-

electrons in the binding of the ligands to the metal center is still uncertain.  

 

6.4 C–X activation attempts using thorium  

6.4.1 Experimental 

One of the experimental ways to test for f-electron participation in actinide mediated C–X activation is to 

use thorium as the metal center and compare the results to the other actinides. Thorium is similar in size 

to uranium, (1.05 and 1.00 Å,88 respectively) but it does not have any f-electrons to use in bonding.11 Thus, 

discrepancies in results could potentially be due to f-electron involvement in the mechanism.  
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The compound (C5Me5)2Th-bpy was synthesized as described in a 2016 manuscript by Walter et.al.121 The 

dark purple powder was reacted analogously to the uranium species; however, when (C5Me5)2Th-bpy 

reacts with benzyl-X (X = Cl, Br), the analogous reaction does not occur. Instead, formation of the major 

product, (C5Me5)2ThX2, is seen, along with several other unidentified decomposition products. These 

reactions were tested at room temperature as well as at 50 °C for up to 24 h with no change in the product 

(Equation 13). No further attempts were made during the course of this project to synthesize 

(C5Me5)2Th(X)(bpy)Bn.  

 

Equation 13. Reaction of (C5Me5)2Th-bpy with benzyl-halides results in the formation of (C5Me5)2ThX2. 

 

6.4.2 Results 

Clearly, there is a difference in reactivity between the thorium and uranium metal centers, which may be 

due to the influence of the 5f electrons. However, it is more likely the ability of uranium to adopt multiple 

oxidation states that allows this chemistry to occur. The oxidation state changes from U(III) in the 

(C5Me5)2U-bpy starting material to U(IV) in all of the (C5Me5)2U(X)(bpy)Bn complexes; however, thorium 

will likely only adopt a Th(IV) oxidation state and cannot be oxidized further. Figure 91 shows the 1H NMR 

data from the reaction of (C5Me5)2Th-bpy with benzyl bromide to give (C5Me5)2ThBr2 at 2.06 ppm. The 

peak at 7.16 ppm is C6D6, the solvent in which the NMR was performed. Other peaks are present in the 

system, but are not identified as a specific decomposition product. A dark powder precipitates from the 

solution, giving more evidence that the reaction does not proceed as expected.  
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Figure 91. 1H NMR (400 MHz, 295 K, C6D6) data shows the formation of (C5Me5)2ThBr2 at 2.06 ppm.  

 

6.5 Conclusions 
Examples of actinide mediated C–X activation are rare, and this work has shown examples for the majority 

of the halide group. An unusual example of a U–F bond was also described.  Aspects of the mechanism 

have been explained, including the theory that the benzyl group adds to a different position on the 

pyridine ring and migrates to its final position, and the potential for f-electron involvement has been 

shown based on the results from the analogous thorium reactions. The divergence in results between 

thorium and uranium could also be due to the size of the metal atom, or the ability for uranium to change 

oxidation states. The covalent radius of thorium is approximately 0.1 Å larger than that of uranium,11 

which may influence the bond distances within the structures. The level of influence of the oxidation state 

of the metal center on the mechanism of formation for the uranium complexes is not well understood; 

however, if there is an influence, the lack of redox capabilities with thorium may help explain why those 
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analogues are not stable via this synthetic method.  Theoretical studies of the mechanism may yield a 

better understanding of the bonding, including the redox behavior or the influences of f-electrons within 

the structure.  
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Chapter 7: Transfer of High-Nitrogen Ligands  
 

7.1 Introduction 
Tetrazoles have a long history of being used in multiple disciplines from medicine178 to explosives.179 In 

some cases, 5-monosubstituted tetrazoles are used as intermediates to other organic heterocycles, 

particularly in drug design.180 They have also seen use in coordination polymers181,182 and metal organic 

frameworks.183,184 Transition metals have been used in the literature to form metal-tetrazolate complexes, 

or as catalysts in tetrazole synthesis,185-190 but gold-tetrazolates are rare, with only a few examples 

reported.186,187,189,190 There is a particular interest in using gold-tetrazolates as precursors for f-element-

tetrazolate synthesis; only one previously published organoactinide-tetrazolate complex exists in the 

literature,131 and more exploration in this field is necessary to understand high-nitrogen f-element 

chemistry.  

Nitrogen is a relatively soft donor atom, and its interactions with the hard donor f-elements may give 

insight into the bonding properties of the actinides. The simultaneous interactions of f-elements with 

multiple nitrogen atoms are also of interest. However, high-nitrogen complexes are known for their 

sensitivity to shock, which can complicate synthetic procedures. The use of a benign transfer agent can 

facilitate the addition of high-nitrogen ligands to metal centers in a safe way.  Lanthanide-tetrazolate 

complexes have also become more of interest in the literature recently,191-201 with most of the research 

focusing on luminescent properties of the 4f tetrazolates.191-194,197-199 They have also been studied for their 

ability to behave as single-molecule magnets, due to their strong spin-orbit coupling ability.196 Very few 

organometallic lanthanide-tetrazolate complexes have been published,200,201 and there are no current 

examples of cerium-tetrazolates. This chapter describes the synthesis and characterization of a novel gold-

tetrazolate compound, and gives brief insight into its use as a precursor for actinide-tetrazolate synthesis.  
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7.2 Experimental 
All compounds described in this chapter were evaluated for shock sensitivity using a hammer prior to 

continuation of analysis. Each compound was struck repeatedly with a hammer at varying intensities to 

test for shock sensitivity. All complexes were tested for friction sensitivity by rubbing a hammer against 

the material with some pressure. If no reaction or detonation occurred in either scenario, the material 

was deemed to be mechanically stable. While none of the compounds reported herein were found to be 

mechanically unstable, tetrazolate ligands are nitrogen-rich and have the potential to form unstable 

compounds. The starting compound (C5Me5)2UI(thf) was prepared as described in the literature,169 and 

(C5Me5)2UO(2,6-di-tert-butylbenzene) was synthesized by a former colleague. The starting tetrazolate 

ligand, potassium methyltetrazolate (21), was prepared by addition of KN(TMS)2 (0.2384 g, 1.195 mmol) 

to a solution of 5-methyltetrazole (0.1020 g, 1.213 mmol) in THF (15 mL). The reaction mixture was stirred 

at room temperature for 48 hours. White precipitate formed and was collected by filtration. The white 

solid was washed with THF (10 mL) and hexane (10 mL) and dried under reduced pressure. Yield:  0.1452 

g (1.188 mmol, 98 %). Characterizations are described in the literature.202 All NMR data can be found in 

Appendix B: NMR Data, and crystal structure parameters are located in Appendix C: Crystal Structure Data. 

Crystal structures are discussed in Section 7.3.2.  

(Ph3P)Au-methyltetrazolate (22)†: To a solution of (Ph3P)AuCl (0.2061 g, 0.4141 mmol) in toluene (25 mL), 

21 (0.0553 g, 0.4525 mmol, 1.1 equiv.) was added. The reaction mixture was stirred at room temperature 

for 18 hours, after which time a white precipitate had formed. The solution was filtered through a Celite-

padded fritted filter and rinsed with hot (85 °C) toluene. Volatiles were removed under reduced pressure 

to give an off-white powder of (Ph3P)Au-methyltetrazolate (0.1800 g, 0.3319 mmol, 80 %). Single crystals 

suitable for X-ray crystallography were grown from toluene at -30 °C. MP: 197.5 °C, decomp. at 200 °C. 1H 

                                                           
† Synthesis and crystal structure originally done by Dr. Kevin Browne. Other analyses and subsequent reactions 
were done as part of this work. 
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NMR (400 MHz, benzene-d6, 298 K): δ 2.58 (s, 3H), 6.87 (t, 6H), 6.96 (t, 3H), 7.06 (m, 6H); 13C NMR (400 

MHz, benzene-d6, 298 K): δ 129.46 (d, J = 12.4 Hz), 134.27 (d, 13.5 Hz); 31P NMR (400 MHz, benzene-d6, 

298 K): δ 30.70. ATR-IR (Neat, 296 K, cm-1): ν 3902s, 3853s, 3744s, 3675s, 3628s, 3567m, 2919m, 2851m, 

2160w, 1734m, 1700s, 1653s, 1559s, 1436s, 1387m, 1100s, 997w, 756s, 697s. Anal. Cald. For C20H18AuN4P 

(mol. wt. 542.30): C, 44.29; H, 3.35; N, 10.33. Found: C, 44.81; H, 3.58; N, 9.99.  

Electrochemistry: Approximately 10 mg of 22 were mixed with approximately 390 mg of [NPr4][BArf
4] and 

2.6 g of THF. A series of scans were done with a potential between -2 and 0 volts. The results are shown 

below.  

(C5Me5)2U[η2-(N,N’)-tetrazolate]2 (23): To a solution of (C5Me5)2UI(thf) (26.40 mg, 0.0373 mmol) in 

benzene-d6 (<1 mL), 22 (39.90 mg, 0.0736 mmol, 2 equiv.) was added. A color change from olive green to 

dark red was seen immediately. The reaction mixture was monitored by 1H NMR for several hours at room 

temperature to give a quantitative yield of (C5Me5)2U[η2-(N,N’)-tetrazolate]2. 1H NMR (400 MHz, benzene-

d6, 296 K): δ 10.31 (s, 30H, C5Me5), -18.72 (s, 6H, tetrazole-CH3). Further characterizations of this 

compound  have been previously reported.131 

(C5Me5)2U(OAr)methyltetrazolate (24): To a solution of (C5Me5)2UO(2,6-di-tert-butylbenzene) (0.0996 g, 

0.1395 mmol) in toluene (3 ml), 22 (0.0758 g, 0.1398 mmol) was added. A color change from dark brown 

to dark red was seen almost immediately. The reaction was stirred at room temperature for 2 hours to 

give (C5Me5)2U(OAr)methyltetrazolate (0.0646 g, 0.0809 mmol, 58 %). MP: 89.2 – 92.1 °C. 1H NMR (400 

MHz, benzene-d6, 298 K): δ 21.61 (d, 1H, OAr), 19.52 (d, 1H, OAr), 14.93 (t, 1H, OAr), 9.46 (s, 9H, tBu), 7.77 

(s, 30H, C5Me5), -4.44 (s, 9H, tBu), -26.46 (s, 3H, Metz).  ATR-IR (Neat, 296 K, cm-1): ν 2953m, 2900m, 

2866m, 2543b, 2181m, 2157m, 2047w, 1867w, 1653w, 1559w, 1435s, 1399s, 1181s, 1118w, 1019w, 855s, 

818s, 744s, 691s. UV-Vis (toluene, 296 K, 5 mM cm-1 (M-1cm-1): 18657 (744), 14695 (141); NIR (toluene, 
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296 K, 30 mM cm-1 (M-1cm-1): 9718 (63), 8733 (50), 8450 (64), 8237 (57), 7616 (42), 7364 (43), 7087 (34), 

6464 (30), 6297 (30), 5966 (29), 5863 (24), 4651 (36), 4596 (38), 4552 (36), 4482 (35).  

Electrochemistry: Approximately 10 mg of 24 were mixed with approximately 390 mg of [NPr4][BArf
4] and 

2.6 g of THF. A series of scans (rates varied from 50 to 5000) were done with a potential between -1 and 

0 volts. The results are shown below. 

(C5Me5)2CeO(2,6-di-tert-butylbenzene) (25): To a solution of (C5Me5)2CeCl(py) (0.1055 g, 0.2009 mmol) in 

THF (3 mL), K(OAr) (0.0489 g, 0.2001 mmol) was added. An immediate color change from yellow to red-

orange was observed. The solution stirred at room temperature for 1 hour before the THF was removed 

under reduced pressure. The orange oil was picked up in toluene, which resulted in an immediate color 

change to magenta. The magenta solution was filtered through a Celite-padded frit and rinsed with 20 mL 

of toluene. Volatiles were removed under reduced pressure to give a magenta-colored powdered 

(C5Me5)2Ce(OAr) (0.1103 g, 0.1785 mmol, 89% yield). 1H NMR (400 MHz, benzene-d6, 296 K): δ 8.00 (d, 

2H, Ar), 7.36 (d, 1H, Ar), 2.80 (s, 30H, C5Me5), -7.48 (s, 18 H, tBu). NMR data is consistent with literature 

values.203 

(Ph3P)Au-(C5Me5) (26): a) To a solution of (C5Me5)2CeCl(py) (0.0987 g, 0.1880 mmol) in toluene (5 mL), 22 

(0.1037 g, 0.1912 mmol) was added. The orange solution slowly turned yellow over the course of 10 

minutes at room temperature. After 24 hours, the solution is olive green in color. It was filtered through 

a Celite-padded frit and rinsed with toluene (20 mL). Volatiles were removed to give a dark yellow-green 

oil, which was taken up in hexane, filtered through a Celite-padded frit, and volatiles were once again 

removed under reduced pressure. A light yellow powder (26, 0.0382 g, 0.0643 mmol, 34% yield) remained. 

X-ray quality crystals of 26 were grown in toluene at -30 °C overnight. 1H NMR (400 MHz, benzene-d6, 296 

K): δ 7.35 (m, 6H, Ph), 6.91 (d, 9H, Ph), 2.41 (s, 15H, C5Me5). 31P NMR (400 MHz, benzene-d6, 296 K): δ 

36.28. Data is consistent with literature values.204  
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b) Complex 25 (0.0251 g, 0.0406 mmol), 22 (0.0212 g, 0.0391 mmol) and benzene-d6 (0.5 mL) were added 

to an NMR tube. A color change from magenta to orange, and finally dark yellow occurred almost 

immediately. The solution reacted for 1 hour at room temperature, after which time, 1H and 31P NMR data 

show the production of 26, and no other phosphorus containing compounds. 

7.3 Results  

7.3.1 Exploratory Chemistry of Compound 22 
The formation of (Ph3P)Au-methyltetrazolate (22) is achieved through the salt metathesis reaction of 

potassium methyltetrazolate (21) and (Ph3P)Au-Cl in toluene (Equation 14). The reaction proceeds at room 

temperature and is complete in under 24 hours. Once the KCl byproduct is filtered off, the toluene solution 

can be dried down to give 22 as an off-white powder.  

 

Equation 14. Formation of (Ph3P)Au-methyltetrazolate 

Complex 22 is not only a novel compound, but it has some interesting chemical properties that have been 

explored using the f-elements. It can be used as a transfer agent for the tetrazolate ligand on to uranium 

metal centers in a very facile, safe way. When two equivalents of 22 are reacted with a uranium (III)-halide 

complex, such as (C5Me5)2UI(thf), the metal oxidizes to U(IV) and two tetrazolates are bound, each in an 

η2 conformation to give the known complex,131 23 (Equation 15).  
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Equation 15. Synthesis of (C5Me5)2U[η2-(N,N')-tetrazole]2 using 22. 

 

When 22 is reacted with a non-halide uranium (III) complex, such as (C5Me5)2U-OAr, the uranium is again 

oxidized to U(IV), but only one tetrazolate ligand is bound, to give (C5Me5)2U(OAr)methyltetrazolate 

(Equation 16).  

 

Equation 16. Synthesis of 24 from (C5Me5)2U-OAr and Ph3PAu-Metz. 

Complex 22 was also reacted with the cerium complexes (C5Me5)2CeCl(py) and (C5Me5)2CeO(2,6-di-tert-

butylbenzene) in an attempt to create the first organometallic cerium tetrazolate. However, the reaction 

with cerium produces several byproducts and decomposition products, including (C5Me5)2. A major 

byproduct of the cerium reaction is the known complex (Ph3P)Au-(C5Me5), which was originally published 

in 1984 by Werner et.al (Scheme 2).204 This byproduct occurs in roughly 35% yield. During the course of 

the reaction, a purple-brown solid, likely containing a cerium product, precipitated out of the toluene 

solution. The solid was dissolved in pyridine to give a purple-brown solution, but no crystals could be 

grown from the mother liquor.  
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Scheme 2. Synthesis of (Ph3P)Au-(C5Me5) from two different routes. 

 

7.3.2 Crystallography 

The ORTEP view of 22 is shown in  
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Figure 92. Selected bond lengths and angles for 22 are reported in Table 32. The geometry around the 

gold atom is nearly linear, with a P – Au – N bond angle of 177.89(6) °. As with similar complexes, only one 

of the nitrogen atoms on the tetrazolate ligand participates in coordination to the gold metal center.186,190  

 

Figure 92. ORTEP view of 22. Hydrogens are omitted for clarity, ellipsoids are drawn at the 50% probability level. 

 

Table 32. Selected bond lengths (Å) and angles (°) of complex 22. 

Au – N 2.054(2) 

Au – P 2.2450(7) 

P – C(1) 1.810(2) 

P – C(7) 1.813(2) 

P – C(13) 1.821(2) 

P – Au – N 177.89(6) 

C – N – Au 132.05(17) 

C(7) – P – Au  111.71(8) 

C(1) – P – C(13) 104.64(10) 

 

A very similar complex, (Ph3P)Au-tetrazolate, was published in 2000 by Nomiya et.al.186 Table 33 compares 

the bond lengths and angles between that complex and 22. The values are very similar, particularly for Au 

– P, Au – N, and P – C bond lengths and the P – Au – N bond angle. There is a noticeable difference between 
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the two complexes for the Au – N – C bond angle, most likely due to the addition of the methyl group on 

the tetrazolate ring of 22.  

Table 33. A comparison of bond lengths (Å) and angles (°) between complex 22 and previously reported work. aThis work. 

 (Ph3P)Au-tet186 (Ph3P)Au-Metz (22)a 

Au – P 2.239(2) 2.2450(7) 

Au – N  2.043(5) 2.054(2) 

P – C  1.811 – 1.815 1.810 – 1.821 

P – Au – N 178.4(1) 177.89(6) 

Au – N – C  129.0(5) 132.05(17) 

 

The Au – P (2.2450(7) Å) and Au – N bond distances (2.054(2) Å) of 22 are in agreement with the Au – P 

(2.239 – 2.250 Å) and Au – N (2.060 – 2.067 Å) bond length ranges from series of similar gold-tetrazolate 

compounds, published by Gaydou et.al. in 2013.190 The Au – N – C bond angle of 22 (132.05(17) °) matches 

well with the range from Gaydou (131.63 – 132.01 °); however, the P – Au – N bond angle of 22 (177.89(6) 

°) is slightly larger (P – Au – N range = 174.57 – 176.82 °).190 This could be due to the presence of different 

R groups on the phosphorus atom in 22.  

7.3.3 Electrochemistry 
Electrochemical studies were performed with 22 and 24 using the electrolyte [NPr4][BArF

4] in THF. 

Potential was applied to the solution between -2 and 2 volts and the current was measured. Any reversible 

events in the current are indicative of a reversible oxidation-reduction reaction, likely occurring at the 

metal center. No oxidation/reduction occurred with 22 (Figure 93), which is unsurprising given the nature 

of gold. Electrochemical studies of 24 show a reversible U(III)/U(IV) couple, which is expected for uranium 

(Figure 94).  
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Figure 93. Electrochemistry data showing no redox potential of compound 22. 

 

Figure 94. Electrochemical data for 24 showing a reversible couple 
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7.4 Conclusion 
This work shows an example of a previously uncharacterized gold-tetrazolate compound and its use as a 

tetrazolate transfer agent in reactions with uranium. These reactions show an example of a novel 

organouranium-tetrazolate complex, of which there was previously only one in the literature.131 The same 

chemistry was attempted using a cerium metal center with distinctly different results. The formation of 

(Ph3P)Au-(C5Me5) is rare, but not unheard of, in f-element synthetic chemistry. However, no crystal 

structure of a cerium tetrazolate complex was obtained. These results are important for the development 

of the chemistry of high-nitrogen containing actinide and lanthanide complexes because they show a 

novel, facile route to adding high-nitrogen ligands to the f-elements. Future efforts will focus heavily on 

obtaining crystal structure data for a cerium tetrazolate complex in order to determine its structure, as 

well as attempting the same chemistry with thorium.  

  



 

171 
 

Chapter 8: Conclusion  
 

The previous seven chapters have described in detail the data and analysis of two different research 

projects; both irradiation of uranium-based materials and organometallic synthesis of thorium and 

uranium. This chapter sums up the conclusions of the two major projects by chapter, and then discusses 

future plans for each project based on the results shown in this document. The contributions of this work 

will be detailed in each summary.  

8.1. Summary of Irradiations 
The main objective of this research was to create an actinide target from which fission products could be 

extracted in a simple, rapid way. Two types of targets were created: a microporous UO2 material combined 

with KBr, and uranium-based metal organic frameworks. Each target was irradiated with neutrons of 

sufficient energy to induce fission in 238U, contacted with a dilute acid, and analyzed via gamma 

spectroscopy for separation potential. Experiments with both the UO2 targets and the UO2-MOF targets 

showed that it is possible to extract fission products from an actinide target in good yields without 

dissolving the target material. A wide range of fission and activation products were extracted into acid 

solutions in less than 24 hours.  

Chapter 2 described the synthesis and irradiation experiments of several UO2 targets. These targets 

comprised microparticles of UO2, often combined with the secondary matrix KBr. A secondary matrix was 

used to aid in the separation of the fission products from the target material by capturing the products 

and easily dissolving in aqueous solutions. Though KBr is inexpensive, readily soluble, and readily available, 

it does have downsides. The material needed to be fully dried before use to prevent the moderation of 

the neutron energies. It was also activated by the neutrons to give 82Br, which has several gamma lines 

that can overshadow fission products in the sample.  
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However, the data shows that a matrix material, even one as simple as KBr, greatly enhanced the ability 

to remove fission products from the target. Fewer fission products were extracted from a target 

comprised solely of UO2 microparticles, and those that were extracted were removed in much lower 

percentages. For example, only 26.52 ± 1.17 % of the fission product 105Rh was extracted from the UO2 

particle target, compared to 58.62 ± 0.97 % extraction from a UO2:3KBr pellet contacted with 0.01 M 

HNO3. Four different types of acid (0.1 M HCl, 0.01 M HCl, 0.1 M HNO3, and 0.01 M HNO3) were analyzed 

for their extraction potential. The study confirmed that HNO3 is a better extractant than HCl, but a more 

concentrated acid will dissolve the entire target. For example, the increase in separation yields for the 

target contacted with 0.1 M HNO3 was due to the dissolution of the uranium target; this outcome was not 

desirable. Therefore, 0.01 M HNO3 was chosen as an extractant for the remaining targets. This information 

shows that the targets can be further optimized for the extraction of fission products.  

The data also show that irradiation of the target in a neutron flux formed from a dense plasma pinch is 

not as efficient at creating fission products as a neutron flux from the critical assembly device Flattop. This 

is likely due to the continuous flux formed from the critical assembly device versus the short, high intensity 

pulses from the plasma. Future applications of this research should explore other ways to use a continuous 

flux of neutrons to achieve the highest rates of fission events, or create a target more suited to short, high 

intensity pulses. For example, increasing the amount of fissionable material may lead to more fission 

events; enriching the sample slightly to increase the probability of a neutron inducing fission could have 

the same effect.  

Chapter 3 described the synthesis, irradiation, and extraction of fission products from uranium based 

metal-organic frameworks (MOFs). Four MOFs were irradiated using Flattop over the course of these 

studies, and the results show that it is possible to extract fission products from the frameworks by 

contacting them with dilute acid. Based on the structure of the framework, different amounts and types 

of fission products were extracted. For example, fission products that can adopt either 4+ or 6+ oxidation 
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states were less likely to be extracted from smaller frameworks. These fission products may have the 

ability to chemically interact with the framework before they can escape.  

As the pore sizes in the framework decrease, the extraction yield appears to decrease as well. The MOF 

targets using the linker molecules 2,6-pyridinedicarboxylic acid (2,6-pydc), 2,5-pydc, and 2,4-pydc were 

compared for their extraction efficiency. As the pore sizes of the frameworks decrease (2,6-pydc > 2,5-

pydc > 2,4-pydc), the extraction efficiency also decreases. Size exclusion of larger isotopes, such as 140Ba, 

may be a factor as the frameworks get smaller; chemical interactions of products that can adopt higher 

oxidation states also become more likely. The MOF material made of pyromellitic acid has pore sizes 

similar in size to the 2,5-pydc framework, but they are elongated rather than circular. More data is needed 

to make a firm conclusion, but the current data set indicates that less symmetrical pore sizes allow for 

better extraction of a wider variety of fission products. The nearly symmetrical pores formed by the 

pyridinedicarboxylic acid linkers do not appear to be as efficient at allowing for extraction as those formed 

by pyromellitic acid. It would be interesting to study other MOFs with significantly different structures for 

their extraction potential. The pore sizes in this study ranged from roughly 6 Å to approximately 9 Å, which 

is a fairly narrow window. Typical ionic radii values for fission products are on the order of 0.5–2 Å,88 so a 

study of smaller pore sizes may be useful to determine if the products are getting trapped in the 

framework. Though more studies should be done, the knowledge that the potential exists to design a 

target to allow for extraction of specific fission products could greatly benefit the production of medical 

isotopes.  

Chapter 4 summarized other attempts at creating porous target materials using depleted uranium. 

Alginate polymer based targets could potentially be useful, but the organic nature of the material caused 

the alginate material to sublime in the heat of the core of the critical assembly device, which can often 

attain temperatures in excess of 220 °C.96 Targets of this type are likely to perform better in a 

temperature-moderated scenario, such as the core of a reactor. A UO2-oxalate polymer was also 
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irradiated using the critical assembly device. Though the target holder did not pop open, the organic 

material changed and reduced the uranium to black UO2. This UO2 material was likely larger in diameter 

than the UO2 studied in Chapter 2, and so a comparison was made between the extraction potentials of 

varying particle sizes. Based on the limited amount of data, it appears that more fission products were 

extracted at higher percentages from the smaller diameter (<10 µm) particles than the larger diameter 

(>10 µm) particles when contacted with the same acid.  

Chapters 2-4 of this thesis work show positive results from the proof-of-principle concept that fission 

products can be extracted easily and rapidly from uranium target materials using dilute (< 0.1 M) acids 

while avoiding the unnecessary step of dissolving the entire target. This concept could lead the 

advancement of the library of fission product ratios based on the original actinide material, which could 

prove beneficial to the field of nuclear forensics. This work could also benefit nuclear medicine as a means 

to quickly produce medical isotopes from the fission of depleted uranium; or lead to the advancement in 

production of 238Pu for fuel fabrication of space exploration vehicles (See Section 8.3.1.1) 

8.2. Summary of Organometallic Work 
The main objective of this set of projects was to understand more about the basic chemistry of thorium 

and uranium, including the involvement of f-electrons in bonding, the interactions of “hard’ actinides with 

“soft” chalcogenide ligands, the examination of uranium-mediated C–X activation, and the facilitation of 

adding high-nitrogen ligands to actinide materials. The understanding of these chemical interactions could 

lead to the next generation of actinide targets; materials composed of compounds that are not easily 

destroyed or activated in a neutron flux are ideal for next generation targets.  

Chapter 5 details the synthesis and characterization studies of thorium-chalcogenide complexes, including 

the novel compound (C5Me5)2Th(SMe)2, and the many routes that lead to (C5Me5)2ThS5. Understanding 

the nature of bonding between the actinides and soft donors such as sulfur may aid in using chalcogenides 
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in the separation of actinides and lanthanides in large scale processes.110 Studies have been done over the 

past few years that show there is a tendency for chalcogenides to preferentially bind to lanthanides, which 

could lead to advancements in separating the later actinides from the lanthanides in spent fuel.110 

However, the chemistry differences between 4f- and 5f-electron compounds must first be better 

understood. The examination of thorium interactions with the chalcogenides, particularly sulfur, show a 

lesser degree of covalent tendencies than its uranium analogues. These results has the potential to be 

exploited in the separation of lower valent actinides from lanthanides. This work also demonstrates a rare 

example of sulfide insertion into an actinide-carbon bond. While similar routes to create (C5Me5)2US5 

proved ineffective, comparisons between (C5Me5)2Th(SMe)2 to (C5Me5)2U(SMe)2 indicate that there is 

more covalency in bonds between the chalcogenides and uranium than with thorium. This may be 

suggestive of f-electron interactions within the molecule.  

Chapter 6 describes the studies of (C5Me5)2U(bpy), a low-valent uranium synthetic equivalent, with benzyl 

halides (F, Cl, Br, and I) as examples of actinide-mediated C–X activation. A series of (C5Me5)2U(X)(bpy)(Bn) 

(X = F, Cl, Br, I) complexes were synthesized and characterized. Attempts at understanding the mechanism 

of addition were also made; including the synthesis of the novel compound (C5Me5)2U(4,4’-tBu2bpy) and 

its subsequent reaction with benzyl chloride to form (C5Me5)2U(Cl)(tBu2bpy)(Bn). In both the substituted 

and unsubstituted bpy ring cases, the benzyl group adds to the 4 position of one ring, even if the position 

had been “blocked” by the tert-butyl groups. This leads to the conclusion that the benzyl group is adding 

to a different position (most probably the 6 or 6’) and migrating around the bpy ring to the 4 (or 4’) 

position. The reaction of (C5Me5)2U(6,6’Me2-bpy) with benzyl chloride leads to the formation of 

(C5Me5)2UCl2 and free bipyridine, indicating an inability of the benzyl ring to add to the blocked 6 (or 6’) 

position. Similar attempts to create thorium analogues did not result in C–X activation, but rather 

(C5Me5)2ThX2 and free bipyridine. This is perhaps indicative of the involvement of f-electrons in the 
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uranium complexes, or perhaps merely a result of the ability of uranium to inhabit several oxidation 

states.  

Chapter 7 summarizes the synthesis and characterizations of (Ph3P)Au-methyltetrazolate and its uses in 

transfer of the methyltetrazolate to actinide compounds. Because tetrazoles are known for their potential 

for sensitivity to shock, it was essential that a pacified complex be created that could safely and easily 

transfer the high-nitrogen ligand to metal centers. Results from this chapter show that it can be used as a 

transfer reagent in a safe environment. For example, reaction of two equivalents of (Ph3P)Au-

methyltetrazolate with (C5Me5)2UI(thf) gives the known compound (C5Me5)2U(Metz)2 (Metz = 

methyltetrazolate). Preliminary research also shows that the transfer of tetrazolates to lanthanides such 

as cerium may also be completed, although more studies and characterizations are needed.  

8.3. Future Work 
Based on the developments made during the course of these projects, there are myriad future directions 

for this research. Listed below are examples from each project that could utilize the conclusions drawn 

from this dissertation to further develop the fields of nuclear forensics and organoactinide synthetic 

chemistry.  

8.3.1 Irradiations 

8.3.1.1 UO2 
The results detailed in this thesis document are only the beginning of a promising exploration into the use 

of actinide target materials to quickly separate fission products for the purpose of building a library of 

fission products. This library can be used to compare fission products their ratios for a given fissionable 

material, or combination of materials, to a detonated device in order to determine its origin.  While KBr 

is proof that a matrix material is useful in increasing the separation, the neutron activation of bromine 

can make data analysis difficult. Future studies may want to use a different matrix in order to avoid 
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complications in the gamma spectrum. For example, a simple salt such as potassium iodide (KI) could be 

used. Though very similar to its KBr counterpart, KI is activated in the neutron flux to give the short-lived 

isotope 128I (t1/2 = 25 min).38 This isotope decays to stable 128Xe, and would not appear in the gamma 

spectroscopy data. Though salts are conveniently removed by dilute acid solutions, they are not the only 

type of secondary matrix worth exploring. The gel targets described in Chapter 4 Section 4.2.1 easily 

dissolved in dilute HCl, and could be used as a removable secondary matrix in experiments with thermally 

cooler conditions.  

A second experiment of interest could be comparing the extraction potential of various sizes of known 

macroparticulate UO2 to the microparticulate version. Comparison of “macroparticle” (i.e. > 10 µm 

diameter) UO2 using a secondary matrix will give insight into the design of the particles for future, larger-

scale experiments. Different methods of analyzing the fission products can also be used: ICP-MS or ICP-

AES will allow one to see fission products that are not gamma emitters, as well as the stable daughters 

from fission products that are too short-lived to see otherwise. Along these lines, imaging and analysis of 

the UO2 particles post-irradiation could also be done to determine if any significant quantity of the 

particles had been dissolved, or otherwise deformed.  

Another possibility to gather data would be to use an enriched sample and irradiate it using thermal 

neutrons from a reactor, rather than fast neutrons from a criticality device. This would allow the organic-

based samples to be irradiated without being heated above their sublimation point. It would also allow 

for the studies of actinide materials with different concentrations of certain actinide isotopes.  

Ideally, the targets presented here can be a proof of principle for studies involving other actinides, such 

as plutonium, and their fission product libraries. It could also be possible to utilize this methodology to 

create and separate activation products. For example, because it has been shown that 239Np can easily be 

extracted, the creation and separation of 238Pu could be simplified by irradiating a target consisting of 
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microparticles of 237NpO2 and a secondary matrix, and using the kinetic energy of the neutron activation 

recoil as the main means of separation.  

8.3.1.2 MOFs 
Future work with MOFs includes diversifying the types of organic linker materials used (i.e. using nitrogen 

based ligands instead of carboxylic acids), choosing a material that forms a different framework type, 

repeating experiments with current frameworks to gather more data points, and changing the actinide 

metal in the framework. The pore sizes of the frameworks can also be varied depending on the isotopes 

of interest. As stated previously, the range in this work was roughly 6 to 9 Å; MOFs have the capability to 

contain pore sizes in excess of 30 Å,24 so more studies with a variety of pore sizes should be done to 

expand the data set. Though there do not seem to be thermal problems with the organic components, 

these materials could also be enriched and irradiated using neutrons from a reactor. Analysis of the 

material post-irradiation to determine the extent of irradiation damage to the framework should also 

been done. This could include powder X-ray diffraction or optical or SEM imaging. 

8.3.1.3 Gels 
Though the alginate gel targets did not provide irradiation data due to their decomposition, they may still 

prove useful using other methods. The experimental data show that the gel is soluble in dilute HCl, 

indicating that the gel could be treated as a secondary matrix, much like the KBr discussed in Chapter 2. 

Comparisons between the UO2:KBr targets and future gel targets may show a correlation between type 

of secondary matrix and efficacy of the separation method described in this document. The gel targets 

would need to be irradiated under different conditions; particularly lower than their decomposition 

temperature, which is roughly 180 °C. Previous chapters have explained that this is possible using a 

research reactor and a target enriched to approximately 3-5% 235U. Explorations into the need for 

homogenous distribution of UO2 particles within the gel should also be performed; improving the special 

distribution of the particles within the target may benefit the extraction yields. Though the entire target 
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would be situated within the neutron flux, targets with large clusters of UO2 particles in one area may not 

give separation yields as high as a target with equal dispersion of particles throughout the gel. The fission 

products escaping from a particle located within the cluster could embed themselves on neighboring 

particles rather than in the gel.  

8.3.2 Organometallics  

8.3.2.1 Thorium chalcogenides 
The lack of 5f-electrons on thorium may contribute to chemical differences between thorium 

chalcogenides and other actinide chalcogenides. Preliminary comparisons between uranium and thorium 

sulfides have been completed, but there are still studies to be done. There have also been attempts to 

synthesize (C5Me5)2US5 in order to investigate the differences between it and the thorium analogue, but 

none have been successful. Should the compound be successfully characterized, comparisons can be 

made between its f-electrons involvement in chalcogenide bonding to the thorium analogue, which has 

no f-electrons.  

8.3.2.2 C-X activation  
A series of novel uranium-halide complexes have been synthesized and characterized. Rare examples of 

actinide-mediated C-X activation, particularly with fluorides, have been presented, although the 

mechanism of the benzyl addition to the bipyridine rings is not fully understood. Theoretical calculations 

and comparisons to experimental data can be done to elucidate the mechanism, as well as the electron 

density around the non-aromatic bipyridine ligand. Comparisons between results from uranium and 

thorium studies can also be drawn. If the chemistry is dependent upon the size of the metal, or if the 5f-

electrons are actively involved in the bonding, it could explain why the reaction does not appear to work 

with a thorium metal center. Studies with other alkyl-X groups could also be done to see if the chemistry 

is similar when the bulk of the alkyl group is changed.  
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8.3.2.3 Methyltetrazolate transfer 
Several examples of the use of Ph3PAu-methyltetrazolate as a transfer agent to actinides have been 

presented. Future work on this project involves using the gold transfer agent to add other tetrazoles to 

actinides, thus opening a world of safely synthesized high-nitrogen actinide complexes. The gold transfer 

agent could also be used to add other ligands - such as alkoxides - to metal centers. Studies are on-going 

to use this method of transfer to attach high-nitrogen ligands to other f-elements, such as cerium. The 

potential contributions from this work include opening the possibility for the synthesis of safe, stable high-

nitrogen actinide complexes for the study of soft-donor nitrogen interactions with the hard-donor 

actinides. 
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Appendix A: Raw data for extraction experiments  
Table 34. Raw data for Figure 19 

Time (min) [U] (mmol/L) 

10 1.66 

20 0.93 

30 1.85 

40 1.74 

50 1.76 

90 4.74 

120 3.86 

150 4.19 

210 5.27 

270 4.93 

330 4.92 

390 6.32 

1440 8.19 
 

 

Table 35. Raw data for Figure 20 

Time (min) [U] (mmol/L) 

10 3.50 

20 0.75 

30 1.12 

40 0.80 

50 0.44 

60 0.47 

90 0.62 

120 0.59 

150 1.36 

210 1.37 

270 1.32 

330 2.33 

390 2.22 

1440 6.19 

7200 5.57 

8640 6.53 
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Table 36. Raw data for Figure 21 

Time (min) [U] (mmol/L) 

10 2.00 

20 2.34 

30 2.69 

40 2.52 

50 2.74 

60 3.12 

90 2.80 

120 3.00 

150 3.71 

210 4.88 

270 3.18 

330 3.91 

390 3.94 

1440 6.83 

7200 7.00 

8640 6.47 
 

 

 

Table 37. Raw data for Figure 34 

Nuclide Energy % Extracted over 1 hour 

Ce-143 293.8 25.87 ± 0.59 

Np-239 99.63 27.26 ± 0.23 

 104 26.75 ± 0.18 

 106.27 2.86 ± 0.05 

 117.29 19.42 ± 0.29 

 228.64 3.11 ± 0.07 

 316.17 15.62 ± 0.52 

Nd-147 91.04 52.69 ± 1.00 

Tc-99m 140.8 23.39 ± 0.26 

Te-132 228.64 3.11 ± 0.07 

Zr-97 743.42 36.47 ± 0.89 

Pm-149 285.7 65.86 ± 1.70 

I-133 530.12 10.84 ± 0.30 

Rh-105 319.57 92.01 ± 1.86 

I-131 364.63 30.64 ± 0.85 
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Table 38. Raw data for Figure 35 

Nuclide   Energy   0.01 M HCl Error 

Ce-143  57.32  0.00 0.00 

  231.72  4.75 0.48 

  293.8  53.58 0.74 

  350.85  9.73 0.87 

  721.64  9.20 1.42 

  664.48  7.45 1.15 

Np-239  61.36  0.00 0.00 

  99.63  16.30 0.18 

  104  13.56 0.13 

  106.27  12.92 0.12 

  117.29  25.51 0.33 

  210.01  35.45 0.46 

  228.64    0.18 

  277.92  72.35 0.22 

  316.17  3.91 0.27 

  334.65  3.62 0.24 

Nd-147  91.04  54.25 0.74 

Tc-99m  140.8 

 

  31.95 0.34 

Mo-99  181.32  0.00 0.00 

  739.53  0.00 0.00 

Ce-141  145.98  65.88 1.06 

Te-132  49.38  0.00 0.00 

  228.64  18.53 0.18 

Xe-135  250.2  19.82 0.24 

Zr-97  743.42  31.45 0.54 

Y-93  267.22  77.20 1.26 

I-135  1131.44  3.72 0.77 

  1259.65  54.64 2.33 

Pm-149  285.7  5.94 0.44 

I-133  530.12  43.06 0.50 

Rh-105  306.61  7.34 0.66 

  319.57  66.96 1.03 

Pm-151   340.64  9.28 0.81 

I-131  364.63  73.76 1.16 

Ru-103  497.38  11.32 1.02 

Ba-140  537.74  10.35 1.29 
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Table 39. Raw data for Figure 36 

Nuclide   Energy   0.1 M HNO3 Error 

Ce-143  57.32  68.30 1.25 

  231.72  0.00 0.00 

  293.8  76.63 1.18 

  350.85  0.00 0.00 

  721.64  0.00 0.00 

  664.48  0.00 0.00 

Np-239  61.36  0.00 0.41 

  99.63  29.52 0.32 

  104  27.14 0.25 

  106.27  26.70 0.23 

  117.29  43.53 0.58 

  210.01  54.58 0.80 

  228.64    0.38 

  277.92  36.00 0.42 

  316.17  12.32 0.81 

  334.65  11.89 0.64 

Nd-147  91.04  60.82 0.88 

Tc-99m  140.8 

 

  48.75 0.59 

Mo-99  181.32  0.00 1.35 

  739.53  0.00 0.00 

Ce-141  145.98  81.06 1.52 

Te-132  49.38  0.00 0.00 

  228.64  34.29 0.38 

Xe-135  250.2  31.51 0.47 

Zr-97  743.42  47.72 0.94 

Y-93  267.22  85.61 1.66 

I-135  1131.44  72.16 5.13 

  1259.65  62.77 5.75 

Pm-149  285.7  11.39 0.98 

I-133  530.12  59.35 0.83 

Rh-105  306.61  0.00 0.00 

  319.57  82.35 1.52 

Pm-151   340.64  18.01 0.00 

I-131  364.63  87.62 1.63 

Ru-103  497.38  0.00 0.00 

Ba-140  537.74  0.00 0.00 
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Table 40. Raw data for Figure 37 

Nuclide  Energy  0.1 M HCl Error 

Ce-143  57.32  43.92 0.63 

  231.72  0.00 0.00 

  293.8  48.31 0.56 

  350.85  0.00 0.00 

  721.64  0.00 0.00 

  664.48  0.00 0.00 

Np-239  61.36  6.46 0.23 

  99.63  14.36 0.12 

  104  13.40 0.09 

  106.27  12.65 0.08 

  117.29  21.59 0.23 

  210.01  27.69 0.32 

  228.64  17.81 0.15 

  277.92  17.41 0.17 

  316.17  4.92 0.25 

  334.65  6.10 0.27 

Nd-147  91.04  41.46 0.46 

Tc-99m  140.8 

 

  

22.11 0.20 

Mo-99  181.32  2.27 0.19 

  739.53  1.54 0.32 

Ce-141  145.98  0.00 0.00 

Te-132  49.38  2.54 0.19 

  228.64  17.81 0.15 

Xe-135  250.2  15.92 0.18 

Zr-97  743.42  24.92 0.40 

Y-93  267.22  7.09 0.52 

I-135  1131.44  0.00 0.00 

  1259.65  0.00 0.00 

Pm-149  285.7  7.24 0.41 

I-133  530.12  36.10 0.39 

Rh-105  306.61  1.61 0.27 

  319.57  57.45 0.86 

Pm-151  340.64  0.00 0.00 

I-131  364.63  68.21 0.99 

Ru-103  497.38  0.00 0.00 

Ba-140  537.74  0.00 0.00 
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Table 41. Raw data for Figure 38 

Nuclide   Energy   0.01 M HNO3 Error 

Ce-143  57.32  0.00 0.00 

  231.72  0.00 0.00 

  293.8  49.29 0.68 

  350.85  2.63 0.34 

  721.64  0.00 0.00 

  664.48  0.00 0.00 

Np-239  61.36  0.00 0.00 

  99.63  19.22 0.21 

  104  16.33 0.15 

  106.27  15.83 0.14 

  117.29  30.93 0.39 

  210.01  12.26 0.30 

  228.64  20.99 0.20 

  277.92  21.40 0.24 

  316.17  16.16 0.56 

  334.65  17.09 0.55 

Nd-147  91.04  56.25 0.77 

Tc-99m  140.8 

 

  29.87 0.31 

Mo-99  181.32  10.89 0.48 

  739.53  0.00 0.00 

Ce-141  145.98  3.51 0.28 

Te-132  49.38  0.00 0.00 

  228.64  20.99 0.20 

Xe-135  250.2  17.86 0.21 

Zr-97  743.42  30.81 0.56 

Y-93  267.22  6.20 0.46 

I-135  1131.44  0.00 0.00 

  1259.65  0.00 0.00 

Pm-149  285.7  25.93 0.90 

I-133  530.12  39.99 0.49 

Rh-105  306.61  0.00 0.00 

  319.57  58.62 0.97 

Pm-151   340.64  2.42 0.32 

I-131  364.63  69.04 1.08 

Ru-103  497.38  5.00 0.56 

Ba-140  537.74  0.00 0.00 
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Table 42. Raw data for Figure 40 

Nuclide   Energy   %Branch   % Extracted 

Ce-143 57.32  11.7  20.59 ± 0.48 

  350.85  3.23  24.51 ± 0.57 

Mo-99 181.32  6.14  12.11 ± 0.52 

  739.53  12.26  4.43 ± 0.26 

Ce-141 145.98  48  34.85 ± 0.69 

Y-93 267.22  7.4  12.65 ± 0.21 

Rh-105 306.61  5.1  7.14 ± 0.38 

  319.57  19.1  26.52 ± 1.17 
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Table 43. Extraction data for the UO2 foam sample in Figure 42 

Nuclide Energy % Extracted Error 

Ce-143 57.32 0.00 0.00 

 231.72 0.00 0.00 

 293.8 9.53 0.17 

 350.85 5.92 0.30 

 664.48 0.00 0.00 

 721.64 0.00 0.00 

Np-239 61.36 0.00 0.00 

 99.63 1.07 0.03 

 104 0.96 0.02 

 106.27 0.86 0.02 

 117.29 1.66 0.06 

 210.01 2.25 0.07 

 228.64 0.82 0.02 

 277.92 0.84 0.03 

 316.17 0.73 0.06 

 334.65 0.70 0.06 

Nd-147 91.04 3.80 0.13 

Tc-99m 140.8 5.04 0.08 

Mo-99 181.32 0.00 0.00 

 739.53 0.00 0.00 

Ce-141 145.98 5.72 0.21 

Te-132 49.38 0.00 0.00 

 228.64 0.82 0.02 

Xe-135 250.2 1.31 0.03 

Zr-97 254.58 0.00 0.00 

 355.72 0.00 0.00 

 507.75 0.00 0.00 

 743.42 0.26 0.03 

Y-93 267.22 6.36 0.25 

I-135 1131.44 0.00 0.00 

 1259.65 7.58 0.53 

Pm-149 285.7 0.00 0.00 

I-133 530.12 8.39 0.12 

Rh-105 306.61 4.51 0.23 

 319.57 4.82 0.17 

Pm-151 340.64 6.21 0.29 

I-131 364.63 6.43 0.22 

Ru-103 497.38 4.88 0.29 

Ba-140 537.74 6.45 0.38 
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Table 44. Raw data for Figure 58 

 
Nuclide   Energy   

 
Branching Ratio %  

% Extracted 
Target 1 PYDC  

Ce-143  57.32  11.7  95.52±1.97 

  231.72  2.05  0.00 

  293.8  42.8  92.54±1.65 

  350.85  3.23  83.12±3.91 

  721.64  53.1  0.00 

  664.48  5.69  70.02±5.28 

Np-239  61.36  1.3  97.45±1.91 

  99.63  12.9  95.89±0.69 

  104  20.5  96.01±0.57 

  106.27  25.34  96.13±0.53 

  117.29  4.87  96.55±1.10 

  210.01  3.36  96.98±1.49 

  228.64  10.73  96.38±0.77 

  277.92  14.51  96.55±0.91 

  316.17  1.6  94.06±2.41 

  334.65  2.06  94.10±2.20 

Nd-147  91.04  28.1  97.05±1.61 

Tc-99m  140.8  89  108.65±1.06 

Mo-99  181.32  6.14  94.45±2.64 

  739.53  12.26  95.38±5.11 

Ce-141  145.98  48  95.95±2.61 

Te-132  49.38  15  97.69±2.49 

  228.64  88  96.38±0.77 

Xe-135  250.2  90  99.05±2.45 

Zr-97  254.58  1.15  83.04±3.40 

  355.72  2.09  68.75±3.77 

  507.75  5.03  68.36±3.73 

  743.42  93.09  84.50±1.49 

Y-93  267.22  7.4  67.54±2.69 

I-135  1131.44  22  0.00 

  1259.65  29  0.00 

Pm-149  285.7  87.2  93.54±2.96 

I-133  530.12  87  84.53±1.16 

Rh-105  306.61  5.1  87.86±3.68 

  319.57  19.1  88.30±2.38 

Pm-151   340.64  22.5  89.21±4.13 

I-131  364.63  81.5  97.96±3.00 

Ru-103  497.38  91  98.55±4.36 
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Ba-140  537.74  24  94.08±5.48 

Zr-95  724.29  44  62.28±4.67 

Sr-91  749.74  23.7  81.13±5.09 

  1023.98  33.5  76.37±4.87 
 

 

Table 45. Raw data for Figure 59 

Nuclide % Extracted 
Ce-143 75.80 ± 3.43 
Np-239 87.57 ± 2.18 
Mo-99 56.68 ± 3.69 
Ce-141 64.50 ± 1.77 
Zr-97 76.04 ± 2.89 

 

 

Table 46. Raw data for Figure 60 

Nuclide Energy (keV) % Extracted 

Ce-143 57.32 35.15 ± 0.69  
721.64 8.22 ± 0.53 

Np-239 104.00 37.24 ± 0.28 

 106.27 40.57 ± 0.22  
117.29 36.10 ± 0.37  
210.01 37.46 ± 0.65  
228.64 43.47 ± 0.45  
277.92 16.45 ± 0.30  
316.17 32.72 ± 0.98 

Tc-99m 140.80 44.90 ± 0.49 

Mo-99 181.32 32.82 ± 0.93 

Te-132 228.64 43.47 ± 0.45 

Xe-135 250.20 16.83 ± 0.28 
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Table 47. Raw data for 

 

Figure 61 

Nuclide Energy (keV) % Extracted UO2-2,4-pydc 

Ce-143 57.32 7.04 ± 0.20 
 721.64 0.00 ± 0.00 

Np-239 104.00 0 .00± 0.00  
106.27 21.68 ± 0.13  
117.29 18.06 ± 0.21  
210.01 5.70 ± 0.19  
228.64 6.20 ± 0.13  
277.92 6.23 ± 0.16 

Tc-99m 140.80 25.38 ± 0.31 

Mo-99 181.32 14.70 ± 0.46 

Te-132 228.64 6.20 ± 0.13 

Ce-141 145.98 0.00 ± 0.00 

Xe-135 250.20 6.44 ± 0.14 

Pm-149 285.70 0.00 ± 0.00 

Zr-97 355.72 0.00 ± 0.00 

Ba-140 537.74 0.00 ± 0.00 

I-131 364.63 6.88 ± 0.42 
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Table 48. Raw data for 

Figure 62 

Nuclide Energy % Extracted 

Ce-143 721.64 47.74 ± 1.19 

Np-239 104.00 68.41 ± 0.38  
106.27 54.80 ± 0.20  
117.29 51.91 ± 0.37  
210.01 55.39 ± 0.67  
228.64 64.24 ± 0.46  
277.92 35.27 ± 0.37 

Tc-99m 140.80 78.84 ± 0.59 

Mo-99 181.32 62.45 ± 1.16 

Te-132 228.64 64.24 ± 0.46 

Xe-135 250.20 56.94 ± 1.08 

Pm-149 285.70 61.48 ± 0.99 

Ba-140 537.74 47.48 ± 1.83 

 

 

Table 49. Raw data for Figure 63 

Nuclide Energy (keV) % Extracted UO2-
2,6-pydc 

% Extracted UO2-
2,5-pydc 

% Extracted 
UO2-2,4-pydc 

% Extracted UO2-prma 

Ce-143 57.32 75.80 ± 3.43 35.15 ± 0.69 7.04 ± 0.20 0.00 ± 0.00 
 721.64 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 47.74 ± 1.19 

Np-239 104.00 0.00 ± 0.00 37.24 ± 0.28 0 .00± 0.00 68.41 ± 0.38 
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106.27 87.57 ± 1.12 40.57 ± 0.22 21.68 ± 0.13 54.80 ± 0.20  
117.29 0.00 ± 0.00 36.10 ± 0.37 18.06 ± 0.21 51.91 ± 0.37  
210.01 0.00 ± 0.00 37.46 ± 0.65 5.70 ± 0.19 55.39 ± 0.67  
228.64 84.85 ± 2.18 43.47 ± 0.45 6.20 ± 0.13 64.24 ± 0.46  
277.92 0.00 ± 0.00 16.45 ± 0.30 6.23 ± 0.16 35.27 ± 0.37 

Tc-99m 140.80 0.00 ± 0.00 44.90 ± 0.49 25.38 ± 0.31 78.84 ± 0.59 

Mo-99 181.32 56. 68 ±3.69 32.82 ± 0.93 14.70 ± 0.46 62.45 ± 1.16 

Te-132 228.64 84.85 ± 2.18 43.47 ± 0.45 6.20 ± 0.13 64.24 ± 0.46 

Ce-141 145.98 64.50 ± 1.77 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Xe-135 250.20 0.00 ± 0.00 16.83 ± 0.28 6.44 ± 0.14 56.94 ± 1.08 

Pm-149 285.70 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 61.48 ± 0.99 

Zr-97 355.72 76.04 ± 2.89 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Ba-140 537.74 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 47.48 ± 1.83 

I-131 364.63 0.00 ± 0.00   0.00 ± 0.00 6.88 ± 0.42 0.00 ± 0.00 

 

 

Table 50. Raw data for UO2-oxalate extraction Figure 70 

Nuclide   Energy (keV) % Extracted UO2- Oxalate 

Ce-143 57.32 19.88 ± 0.39 

  350.85 0.00 ± 0.00 

Np-239  99.63 9.01 ± 0.11 

  104 0.00 ± 0.00 

  106 17.69 ± 0.12 

  117 16.81 ± 0.22 

  228 15.82 ± 0.22 

Tc-99m  140.8 18.77 ± 0.27 

Mo-99 181.32 9.20 ± 0.41 

  739.53 0.00 ± 0.00 

Ce-141 145.98 0.00 ± 0.00 

Xe-135  250.2 6.96 ± 0.18 

Y-93 267.22 0.00 ± 0.00 

Rh-105 306.61 0.00 ± 0.00 

  319.57 0.00 ± 0.00 
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Appendix B: NMR Data 

 

Figure 95. 1H NMR (400 MHz, 295 K, C6D6) spectrum showing (C5Me5)2ThS5 at 2.04 ppm; THF solvent is present at 3.58 and 1.42 
ppm.  

 

Figure 96. 1H NMR (400 MHz, 295 K, C6D6) spectrum of (C5Me5)2Th(SMe)2: 2.50 ppm (SMe), 2.11 ppm (C5Me5); THF solvent is 
present at 3.58 and 1.42 ppm. 
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Figure 97. 13C NMR (400 MHz, 295 K, C6D6) spectrum of (C5Me5)2Th(SMe)2: 126.25 ppm (C5Me5), 11.89 ppm (SMe), 11.35 ppm 
(C5Me5). The solvent C6D6 is present at 127 ppm. 

 

Figure 98. 1H NMR (400 MHz, 295 K, C6D6) spectrum of benzyl fluoride ((C6H5)CH2-F) from the synthesis of benzyl bromide and 
[Cp2Co]F: 7.07 ppm (C6H5), 5.00 and 4.88 ppm (CH2). Toluene is present at 2.11 ppm. 
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Figure 99. 19F NMR (400 MHz, 295 K, C6D6) spectrum of benzyl fluoride.  

 

Figure 100. 1H NMR (400 MHz, 295 K, C6D6) spectrum of (C5Me5)2U(F)(bpy)(Bn). The C5Me5 peaks for both isomers are present at 
1.47 and -2.50 ppm. The ratio of formation between the isomers is 1:0.83. 
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Figure 101. 1H NMR (400 MHz, 295 K, C6D6) spectrum of (C5Me5)2U(Cl)(bpy)(Bn). The C5Me5 peak for one isomer occurs as a 
doublet at 13.08 ppm, and the other isomer appears as a singlet at 6.03 ppm. A small amount of (C5Me5)2UCl2 is seen at 13.60 
ppm.  The paramagnetism of the uranium(IV) metal center leads to extreme shifts in the bipyridine ligand as exemplified by the 
peaks at 49.53 ppm and -74.61 ppm, for example.  
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Figure 102. 1H NMR (400 MHz, 295 K, C6D6) spectrum of (C5Me5)2U(Br)(bpy)(Bn). As with the two previous compounds, there are 
two isomers present: one C5Me5 peak occurs as a doublet at 14.86 and 14.53 ppm, the other as a singlet at 8.52 ppm. There is 
toluene present in the spectrum at 2.12 ppm. At 15.69 ppm, a broad peak indicates the presence of a small amount of 
(C5Me5)2UBr2. As with the chloride analogue, the paramagnetism of the uranium metal center causes shifts of the bipyridine 
ligand signals.  
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Figure 103. 1H NMR (400 MHz, 295 K, C6D6) spectrum of the product from the reaction of (C5Me5)2U(Br)(bpy)(Bn) with one 
equivalent of [Cp2Co]F after 24 h. The ingrowth of a singlet peak at -2.79 ppm is indicative of one isomer of (C5Me5)2U(I)(bpy)(Bn). 
The other isomer is not seen, and likely does not undergo halide exchange. One isomer of the bromide starting material is still 
present, and (C5Me5)2 has grown in (1.77, 1.68, and 1.16 ppm), indicating the occurrence of decomposition of one or more of the 
(C5Me5)2 containing materials.  



 

200 
 

 

Figure 104. A small section of the 1H NMR (400 MHz, 295 K, C6D6) spectrum of the product from the reaction of 
(C5Me5)2U(Br)(bpy)(Bn) with one equivalent of trimethylsilyl-iodide (TMS-I). Unreacted TMS-I is located at 0.45 ppm and 0.12 
ppm, and ingrowth of TMS-Br occurs at 0.28 ppm, indicating an exchange of the halides. Formation of (C5Me5)2UI2 is seen as a 
broad peak at 18.08 ppm. Ingrowth of peaks corresponding to one isomer of the (C5Me5)2U(I)(bpy)(Bn) occur at 11.57 and 11.45 
ppm. Both isomers of (C5Me5)2U(Br)(bpy)(Bn) are still present in the reaction after 5 h (14.93 ppm, 14.60 ppm, and 8.55 ppm), 
when the reaction appears to stop.  
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Figure 105. 1H NMR (400 MHz, 295 K, C6D6) spectrum of (C5Me5)2U(4,4’-tBu2bpy): -1.87 ppm (C5Me5), -5.32 ppm (tBu), -23.05 ppm 
(bpy), -79.68 (bpy), -91.51 (bpy). Toluene is present at 2.12 ppm.  

 

 

Figure 106. 1H NMR (400 MHz, 295 K, C6D6) spectrum of (C5Me5)2U(4,4’-Me2bpy): 38.27 ppm (Me), -2.44 ppm (C5Me5), -27.98 
ppm (bpy), -76.09 ppm (bpy), -98.22 ppm (bpy). Toluene is present at 2.12 ppm.  



 

202 
 

 

Figure 107. 1H NMR (400 MHz, 295 K, C6D6) spectrum of (C5Me5)2U(Cl)(4,4’-tBu2bpy)(Bn). As with previous compounds, there 
are two isomers present: one C5Me5 peak occurs as a doublet at 13.31 and 12.56 ppm, the other as a singlet at 6.96 ppm. The 
tBu groups for each isomer occur at -5.06 and -5.18 ppm, respectively. There is toluene present in the spectrum at 2.11 ppm.  
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Figure 108. 1H NMR (400 MHz, 295 K, C6D6) spectrum of (C5Me5)2U(6,6’-Me2bpy): 2.62 ppm (C5Me5), -8.92 ppm (Me2bpy), -77.03 
ppm (bpy), -96.75 ppm (bpy), -126.32 ppm (bpy).  

 

Figure 109. 1H NMR (400 MHz, 295 K, C6D6) spectrum from the reaction of (C5Me5)2U(6,6’-Me2bpy) and benzyl chloride. The major 
products are (C5Me5)2UCl2 (13.69 ppm), and free 6,6’-Me2bpy ligand (8.66, 7.24, 6.68, and 2.46 ppm), which shows that the 
reaction did not proceed.  
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Figure 110. 1H NMR (400 MHz, 295 K, C6D6) spectrum of (Ph3P)Au-methyltetrazolate: 7.06 ppm (multiplet, Ph), 6.96 ppm 
(multiplet, Ph), 6.87 (multiplet, Ph), 2.58 (Me).  

 

Figure 111. 31P NMR (400 MHz, 295 K, C6D6) spectrum of (PH3P)Au-methyltetrazolate. There is one peak in the spectrum at 30.70 
ppm, corresponding to the phosphorus in the complex.  
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Figure 112. 13C NMR (400 MHz, 295 K, C6D6) spectrum of (PH3P)Au-methyltetrazolate: 134.41 and 134.27 pm (C-N), 131.92 ppm 
(Me), 129.46 and 129.34 ppm (Ph3P).  

 

Figure 113. 1H NMR (400 MHz, 295 K, C6D6) spectrum of (C5Me5)2U(O-2,6-di-tert-butylbenzene)(methyltetrazolate): 9.46 ppm 
(tBu), 7.77 ppm (C5Me5), -4.44 ppm (tBu), -26.46 ppm (Me). 
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Appendix C: Crystal Structure Data 
Table 51. Crystal Structure Parameters for (C5Me5)2Th(SMe)2 

 (C5Me5)2Th(SMe)2 
Empirical Formula C22H36S2Th 
Formula Weight 596.67 
Crystal System Orthorhombic 
a [Å] 14.360(5) 
b [Å] 9.552(8) 
c [Å] 16.540(1) 
Β [°] 90 
V [Å3] 2256.7(3) 
Space Group Pbcn 
Z 4 
ρ [g/cm3] 1.756 
µ [MoΚα] 6.796 
Τ [Κ] 140(1) 
2Θmax [°] 57.28 
Min/max trans. 0.1935/0.3435 
Total reflns 24625 
Unique reflns 2820 
Parameters 120 
R1(wR1) (all data) 0.0133 (0.0185) 

 

Table 52. Crystal parameters for (C5Me5)2U(F)(bpy)Bn 

 (C5Me5)2U(F)(bpy)Bn 
Empirical Formula C37H45FN2U 
Formula Weight 774.78 
Crystal System Triclinic 
a [Å] 13.718(12) 
b [Å] 15.396(13) 
c [Å] 16.494(14) 
Β [°] 92.465(10) 
γ [°] 94.153(10) 
V [Å3] 3188(5) 
Space Group P-1 
Z 4 
ρ [g/cm3] 1.614 
µ [MoΚα] 5.124 
Τ [Κ] 100(1) 
2Θmax [°] 51.99 
Min/max trans. 0.607/0.821 
Total reflns 31611 
Unique reflns 7761 
Parameters 759 
R1(wR1) (all data) 0.0651 (0.1137) 
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Table 53. Crystal parameters for (C5Me5)2U(Cl)(bpy)Bn 

 (C5Me5)2U(Cl)(bpy)Bn 
Empirical Formula C37H45ClN2U 
Formula Weight 791.23 
Crystal System Orthorhombic 
a [Å] 16.748(3) 
b [Å] 13.217(2) 
c [Å] 14.430(3) 
Β [°] 90 
V [Å3] 3194.3(10) 
Space Group Pnma 
Z 4 
ρ [g/cm3] 1.645 
µ [MoΚα] 5.193 
Τ [Κ] 140(1) 
2Θmax [°] 53.76 
Min/max trans. 0.369/0.681 
Total reflns 33530 
Unique reflns 3127 
Parameters 228 
R1(wR1) (all data) 0.0250 (0.0324) 

 

Table 54. Crystal parameters for (C5Me5)2U(Br)(bpy)Bn 

 (C5Me5)2U(Br)(bpy)Bn 
Empirical Formula C37H45FN2U 
Formula Weight 835.69 
Crystal System Orthorhombic 
a [Å] 16.993(8) 
b [Å] 13.146(7) 
c [Å] 14.428(7) 
Β [°] 90 
V [Å3] 3223(3) 
Space Group Pnma 
Z 4 
ρ [g/cm3] 1.722 
µ [MoΚα] 6.304 
Τ [Κ] 140(1) 
2Θmax [°] 54.74 
Min/max trans. 0.560/0.704 
Total reflns 35492 
Unique reflns 7597 
Parameters 228 
R1(wR1) (all data) 0.0285 (0.0388) 
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Table 55. Crystal parameter data for (C5Me5)2U(I)(bpy)Bn 

 (C5Me5)2U(I)(bpy)Bn 
Empirical Formula C37H45IN2U 
Formula Weight 882.68 
Crystal System Orthorhombic 
a [Å] 17.580(5) 
b [Å] 13.040(4) 
c [Å] 14.431(4) 
Β [°] 90 
V [Å3] 3308.3(16) 
Space Group Pnma 
Z 4 
ρ [g/cm3] 1.772 
µ [MoΚα] 5.867 
Τ [Κ] 100(1) 
2Θmax [°] 57.24 
Min/max trans. 0.231/0625 
Total reflns 37324 
Unique reflns 4278 
Parameters 219 
R1(wR1) (all data) 0.0502 (0.0568) 

 

Table 56. Crystal parameters for (C5Me5)2U(Cl)(tBu2bpy)Bn 

 (C5Me5)2U(Cl)(tBu2bpy)Bn 
Empirical Formula C30H32ClN2U 
Formula Weight 694.05 
Crystal System Monoclinic 
a [Å] 26.371(15) 
b [Å] 17.109(10) 
c [Å] 22.412(13) 
Β [°] 101.493(7) 
γ [°] 90 
V [Å3] 9909(10) 
Space Group C2/c 
Z 16 
ρ [g/cm3] 1.861 
µ [MoΚα] 6.682 
Τ [Κ] 100(1) 
2Θmax [°] 51.586 
Min/max trans. 0.263/0.479 
Total reflns 48672 
Unique reflns 9374 
Parameters 446 
R1(wR1) (all data) 0.0315 (0.0498) 
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Table 57. Crystal parameters for (C5Me5)2U(6,6’-Me2bpy) 

 (C5Me5)2U(6,6’-Me2bpy) 
Empirical Formula C32H42N2U 
Formula Weight 692.70 
Crystal System Triclinic 
a [Å] 8.839(4) 
b [Å] 9.856(4) 
c [Å] 16.603(7) 
α [°]  78.048(5) 
Β [°] 81.815(5) 
γ [°] 70.826(5) 
V [Å3] 1332.3(10) 
Space Group P-1 
Z 2 
ρ [g/cm3] 1.727 
µ [MoΚα] 6.115 
Τ [Κ] 100(2) 
2Θmax [°] 52.26 
Min/max trans. 0.225/0.486 
Total reflns 13750 
Unique reflns 5229 
Parameters 316 
R1(wR1) (all data) 0.0875 (0.0847) 
  

Table 58. Crystal structure parameters for Ph3PAu-methyltetrazolate 

 Ph3PAu-Metz 
Empirical Formula C20H18AuN4P 
Formula Weight 542.32 
Crystal System Monoclinic 
a [Å] 9.0154(17) 
b [Å] 15.158(3) 
c [Å] 13.614(3) 
Β [°] 90 
γ [°] 91.065(2) 
V [Å3] 1860.0(6) 
Space Group P21/n 
Z 4 
ρ [g/cm3] 1.937 
µ [MoΚα] 8.006 
Τ [Κ] 100(1) 
2Θmax [°] 57.28 
Min/max trans. 0.213/0.533 
Total reflns 20867 
Unique reflns 4481 
Parameters 120 
R1(wR1) (all data) 0.0216 (0.0181) 
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